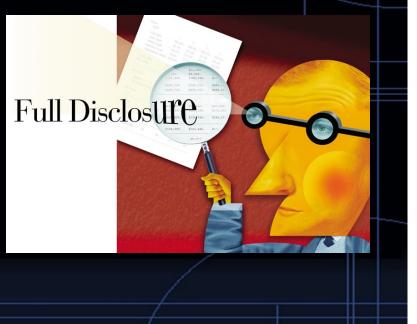
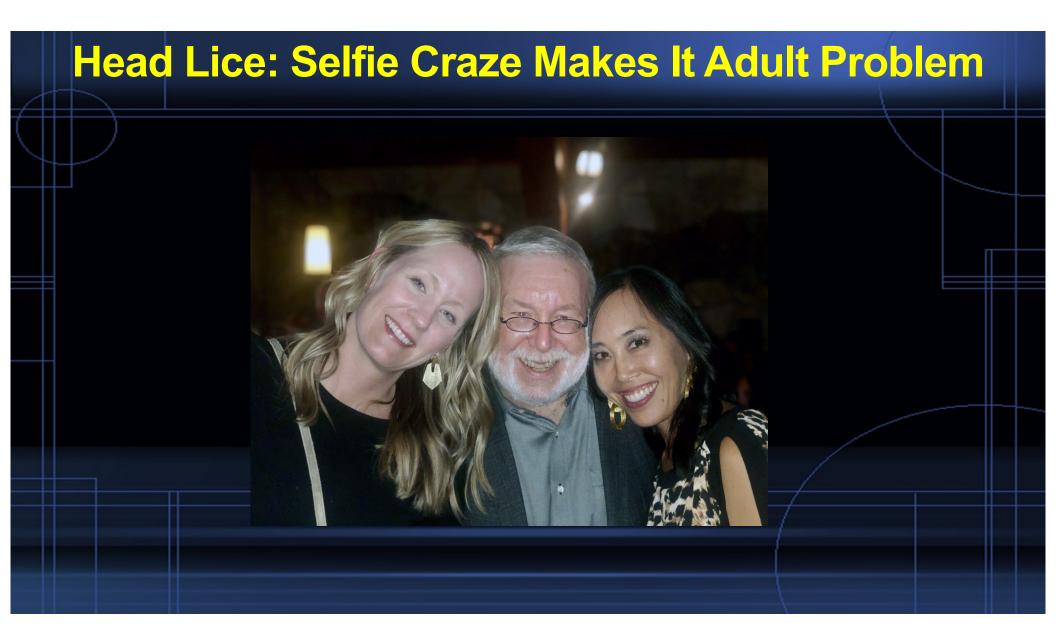


Dr. Martin's Disclosures:


Scientific Advisory Board: Bristol Meyers Squibb, DUSA/SUN, AbbVie, Ortho/Bausch Health, Galderma, Pfizer, LEO, Celgene, Janssen, Horizon, UCB, Trevi, Almirall, Evelo, Organogenesis,, Dermavant, Incyte

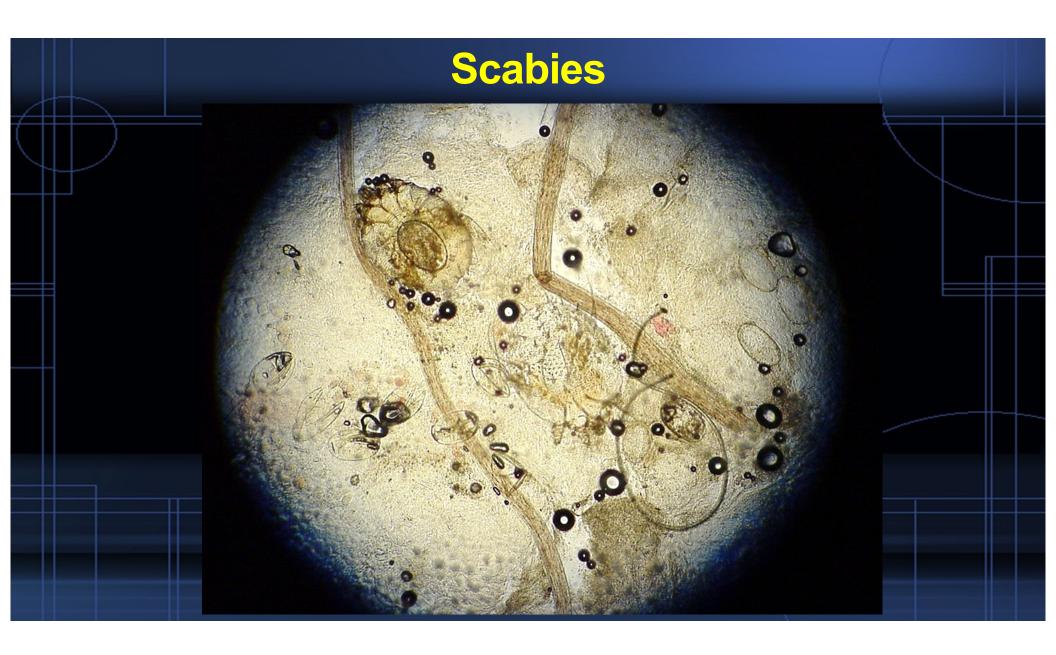
Consultant: Bristol Meyers Squibb, DUSA/SUN, AbbVie, Ortho/Bausch Health, Galderma, Pfizer, LEO, Celgene, UCB, Trevi, Almirall, Lilly, Evelo

Speaker: UCB, Almirall, LEO, Incyte, Dermavant


Dr. Rosen's Disclosures:

Advisory Board, with honorarium: Almirall Verrica Consultant DermTech

Widespread pyrethroid resistance



Good Head Lice News

Ivermectin lotion 0.5% OTC since 10/2020 Now readily available No resistance Approved FOR ≥ 6mo age Single 10 minute application 75% patients lice-free in 2 weeks Commercial price \$340

But online coupons down to \$35

> Hautarzt. 2020 Jun;71(6):447-454. doi: 10.1007/s00105-020-04608-0.

[Increase of scabies and therapy resistance among German military personnel : An 8-year follow-up study in the Department of Dermatology of the Armed Forces Hospital Berlin, Germany (2012-2019)]

[Article in German] E Elsner ¹, T Uhlmann ², S Krause ², R Hartmann ³

> Hautarzt. 2020 May;71(5):374-379. doi: 10.1007/s00105-020-04561-y.

[Scabies therapy in Germany : Results of a nationwide survey with a special focus on the efficacy of first-line therapy with permethrin]

[Article in German] B Hackenberg ¹, O N Horváth ², M Petachti ³, R Schult ⁴, N Yenigün ⁵, P Bannenberg ⁶

Hautarzt. 2020 May;71(5):374-379 Hautarzt. 2020 May;71(7):447-454

Resistant Sarcoptes scabiei

Letter to the Editor

Scabies is becoming less sensitive to permethrin therapy

R. Balestri, M. Magnano 🔀, S.D. Infusino, L. Rizzoli, C.R. Girardelli, G. Rech

First published: 26 July 2021 | https://doi.org/10.1111/jdv.17538

Resistant Sarcoptes scabiei

J Eur Acad Dermatol Venereol 2021; July 26. doi: 10.1111/jdv.17538

Spinosad for Scabies

- Spinosyns (natural) and spinosoids (synthetic)
- Fermentation products soil actinomycete Saccharopolyspora spinosa
- Most abundant: Spinosyn A and Spinosyn D (Thus: Spinosad)
- Tetracyclic macrolides + two saccharides
- Potent insecticides: disrupt nicotinic acetylcholine receptors
 - -Causes hyper-excitation of insect neurologic system
- Selective; no activity against mammals, avian and aquatic animals
- Spinosad 0.9% suspension already approved for head lice
- NEW DATA: USE FOR SCABIES: Single application (6-8hr)
 - Complete cure > vehicle (Vehicle contains benzyl alcohol)
- FDA Approved for scabies: Apr 29, 2021 (Age ≥ 4yr)

NCT02485717 (3-23-2020) and NCT02485704 (3-19-2020)

Spinosad: Complete Cure (Day 28) After 1 Application									
\square	TRIAL	ACTIVE	VEHICLE						
	1	69.8%	46.5%						
	2	83.9%	34.5%						
 Application site erythema 3% Application site irritation 1% Everything else < 1% 									
NCT	02485717 (3-23-2020) and NCT02	485704 (3-19-2020)							

Spinosad at 0.9% in the treatment of scabies: Efficacy results from 2 multicenter, randomized, double-blind, vehicle-controlled studies

Jeffrey C. Seiler, MD,^a Richard C. Keech, MD,^b Julie L. Aker, MT(ASCP),^c William Miller, MD,^c Christopher Belcher, MD,^d and Kerry W. Mettert, MBA, MT(ASCP)^e *West Palm Beach, Florida; Anabeim, California; Indianapolis and Carmel, Indiana*

J Am Acad Dermatol. 2022;86(1):97-103

Molluscum: New Therapy....Coming!

Molluscum Contagiosum (MC)

Molluscum contagiosum

is caused by a pox virus and is characterized by small, round, firm, umbilicated, often painless bumps¹⁻⁴

There are **4 known types** of MC virus (MCV1, 2, 3, and 4), with MCV1 and MCV2 being the most common^{2,5}

MC can take a long time to resolve, ranging from 13 months to 5 years^{4,6,7}

Absence of an animal or cell culture model for MC poses a **research challenge**⁸

FDA, US Food and Drug Administration.

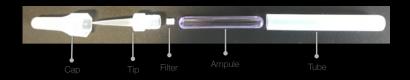
Known psychosocial complications of MC include stigma, disfiguring lesions and scars, and bullying^{1,6,8}

Up to of **73%** go

of children go untreated¹¹

Currently, there is no FDA-approved medication for MC¹²

Silverberg NB. Cutis. 2019;104(5):301-305. 2. Meza-Romero R, et al. Clin Cosmet Investig Dermatol. 2019;12:373-381. 3. Bhatia N. Pract Derm. 2021;34-35. 4. Butala N, et al. Pediatrics. 2013;131(5):e1650-e1653. 5. Coyner T. J Dermatol Nurs Assoc. 2020;12(3):115-120. 6. Olsen JR, et al. Lancet Infect Dis. 2015;15(2):190-195. 7. Molluscum contagiosum: diagnosis and treatment. American Academy of Dermatology. Accessed July 12, 2022. https://www.aad.org/public/diseases/a-z/molluscum-contagiosum-treatment. 8. Braue A, et al. Pediatr Dermatol. 2005;22(4):287-294.
 About molluscum. Accessed December 3, 2021. https://aboutmolluscum.com/. 10. Global molluscum contagiosum epidemiology forecast to 2028. December 16, 2019. Accessed December 3, 2021. https://www.businesswire.com/news/home/20191216005378/en/Global-Molluscum-Contagiosum-Epidemiology-Forecast-to-2028—ResearchAndIVarkets.com. 11. Basdag H, et al. Pediatr Dermatol. 2015;32(3):353-357. 12. Ong SK, et al. Pediatr Dermatol. 2021;38(5):1400-1403.

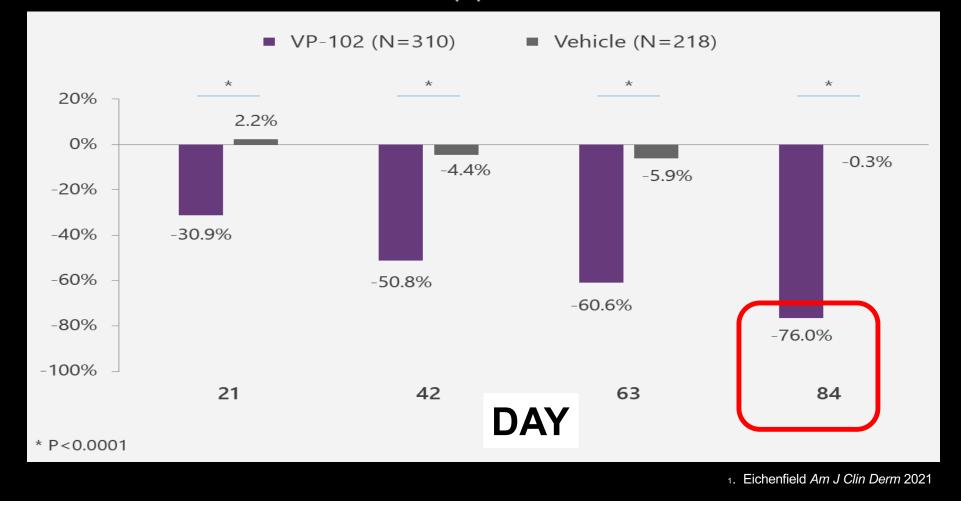

VP-102 (Cantharidin, 0.7% w/v) Drug-Device Combination Product Delivered via a Single-Use Applicator

Topical solution in a single-use applicator

- Active ingredient cantharidin (0.7% w/v) in a unique topical formulation
- Single-use applicator to reduce cross-contamination and facilitate application of the topical solution
- Small opening allows for targeting of affected skin

GMP-controlled, shelf-stable, consistent topical formulation

- Allows for reliable dosing/administration
- · Bittering agent to deter oral ingestion
- · Visualization agent to identify treated lesions



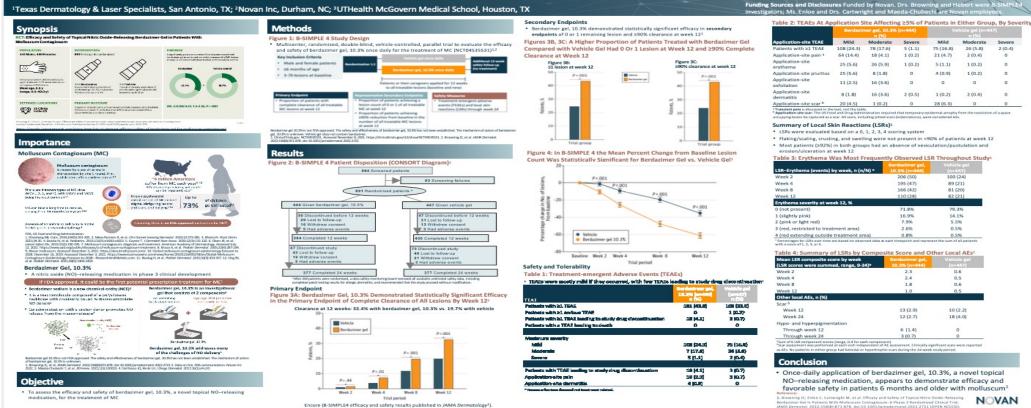
 Note: VP-102 is not FDA-approved, for presentation purposes only

Phase 3 Clinical Trial Results for Safety and Efficacy in Molluscum Contagiosum Published¹

1. Eichenfield JAMA Derm 2020

Pooled Percent Change in Molluscum Contagiosum Lesion Count from Baseline

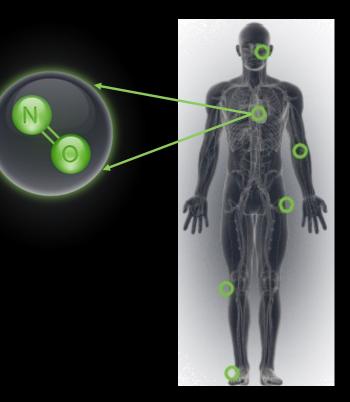
Pooled Safety of VP-102: Treatment Emergent **AEs by Severity**


		VP-102 (N=311)			Vehicle (N=216)	
At Least One Incidence: N (%)	Mild	Moderate	Severe	Mild	Moderate	Severe
Application Site Vesicles	187 (60.1)	100 (32.2)	11 (3.5)	59 (27.3)	4 (1.9)	0
Application Site Pruritus	145 (46.6)	23 (7.4)	1 (0.3)	62 (28.7)	13 (6.0)	0
Application Site Pain	127 (40.8)	59 (19.0)	7 (2.3)	34 (15.7)	2 (0.9)	0
Application Site Scab	120 (38.6)	27 (8.7)	0	44 (20.4)	3 (1.4)	0
Application Site Discoloration	87 (28.0)	12 (3.9)	1 (0.3)	25 (11.6)	2 (0.9)	0
Application Site Erythema	73 (23.5)	65 (20.9)	1 (0.3)	43 (19.9)	15 (6.9)	0
Application Site Dryness	58 (18.6)	5 (1.6)	0	30 (13.9)	1 (0.5)	0
Application Site Edema	21 (6.8)	8 (2.6)	0	7 (3.2)	3 (1.4)	0
Application Site Erosion	20 (6.4)	2 (0.6)	0	2 (0.9)	0	0
1. Eichenfield Am J Clin Derm 2021						

Phase 3 Results: Nitric Oxide Releasing **Berdazimer 10.3% Gel for Molluscum**

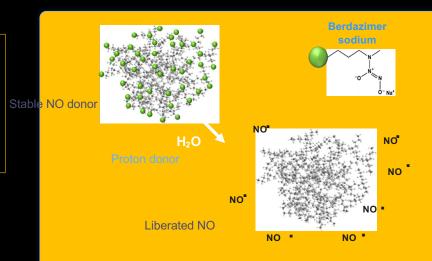
Efficacy and Safety of Topical Nitric Oxide-Releasing Berdazimer Gel in Patients With Molluscum Contagiosum: Results from B-SIMPLE4. A Phase 3 Randomized Clinical Trial

John C. Browning, MD,¹ Carolyn Enloe, MPH,² Martina Cartwright, PhD,² Adelaide Hebert, MD,³ Tomoko Maeda-Chubachi, MD, PhD, MBA²


¹Texas Dermatology & Laser Specialists, San Antonio, TX; ²Novan Inc, Durham, NC; ³UTHealth McGovern Medical School, Houston, TX

Nitric Oxide Mechanisms of Action

- Science Breakthrough of the Year (1992)
- Nobel Prize in Medicine (1998)
- >100,000 peer-reviewed manuscripts
- Broad-spectrum antimicrobial
 - Antibacterial
 - Antiviral
 - Antifungal
- Immunomodulatory agent
 - Decreases key biomarkers for inflammation
 - Inhibits T-cell proliferation
 - Results in NO-derived regulatory T cells

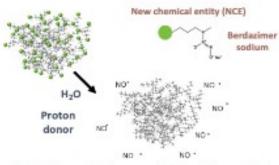

Nitric oxide plays a vital role in the natural immune system response against microbial pathogens and is a critical regulator of inflammation.

Berdazimer 10.3% For The Treatment of Molluscum Contagiosum

Berdazimer 10.3% gel is in Phase 3 development and poised to be a first-in-class, topical, controlled-NO-release medication for the treatment of molluscum contagiosum. NDA to be filed second half of 2022

- Nitric oxide (NO) is an endogenous small molecule
 - Short-lived immune modulator
 - Direct broad-spectrum antimicrobial agent
- Berdazimer sodium is a new chemical entity (NCE)
 - Macromolecule covalently bound to N-diazeniumdiolate NO donors
- Co-administration with a proton donor (hydrogel)
 - Promotes NO release from the macromolecule
 - Stable delivery of NO to site of application

- Stable
- Engineered macromolecule
- Tunable delivery at the site of application


Berdazimer Gel 10.3%: Nitric Oxide Releasing Medication

Berdazimer Gel, 10.3%

A nitric oxide (NO)-releasing medication in phase 3 clinical development

If FDA approved, it could be the first potential prescription treatment for MC¹

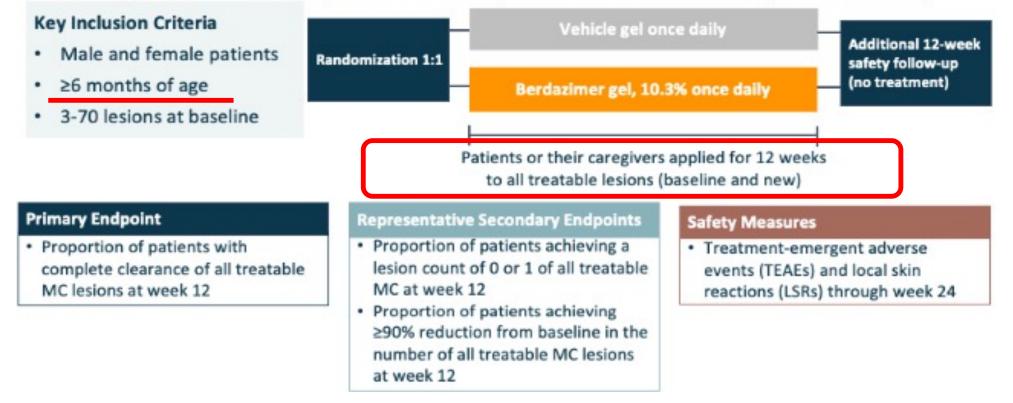
- Berdazimer sodium is a new chemical entity (NCE)²
- It is a macromolecule composed of a polysiloxane backbone with covalently bound N-diazeniumdiolate NO donors³
- Co-administration with a proton donor promotes NO release from the macromolecule³

Berdazimer gel, 10.3% is an investigational gel that consists of 2 components³

- Gel containing berdazimer sodium
- Hydrogel that promotes nitric oxide release

Berdazimer gel, 10.3%

Berdazimer gel, 10.3% addresses many of the challenges of NO delivery⁴


Berdazimer gel 10.3% is not FDA approved. The safety and effectiveness of berdazimer gel, 10.3% has not been established. The mechanism of action of berdazimer gel, 10.3% is unknown.

 Browning JC, et al. JAMA Dermatol. 2022;158(8):871-878. doi:10.1001/jamadermatol.2022.2721 2. Data on File. FDA communication. Novan Inc. 2022. 3. Maeda-Chubachi T, et al. JID Innov. 2021;1(3):100019. 4. Del Rosso JQ, Kircik LH. J Drugs Dermatol. 2017;16(1):s4-s10.

Trial Design

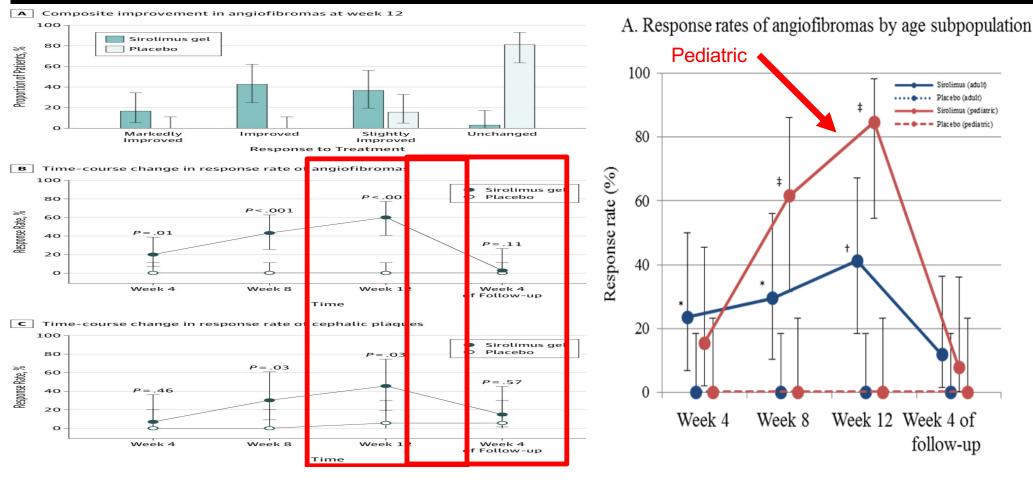
Figure 1: B-SIMPLE 4 Study Design

 Multicenter, randomized, double-blind, vehicle-controlled, parallel trial to evaluate the efficacy and safety of berdazimer gel, 10.3% once daily for the treatment of MC (NCT04535531)^{1,2}

Efficacy Results of B-SIMPLE4

	B-SIMPLE4			
	SB206 (N=444)	Vehicle (N=447)	p-value	
Primary Endpoint: Complete Clearance of All Lesions at Week 12	32.4%	19.7%	p<0.0001	
Secondary Endpoint: Proportion Achieving a Lesion Count of 0 or 1 at Week 12	43.5%	24.6%	p<0.0001	
Secondary Endpoint: Proportion Achieving ≥90% Clearance of Lesions at Week 12	43.0%	23.9%	p<0.0001	
Secondary Endpoint: Complete Clearance of All Lesions at Week 8	19.6%	11.6%	p=0.0014	

2% Sirolimus Gel (HYFTOR™) Treatment of Angiofibromas Associated with Tuberous Sclerosis


Phase 3 Trial

- Tuberous sclerosis complex (TSC), an autosomal-dominant disorder caused by the constitutive activation of mammalian target of rapamycin (mTOR), gives rise to hamartomas in multiple organs.
 - Angiofibromas are the most predominant skin lesions observed in patients with TSC older than 5 year
- Phase 3, multicenter, randomized, double-blind, 1:1 (drug: placebo) placebo-controlled trial conducted at 9 sites in Japan
- Eligibility: ≥3 years definitive diagnosis of TSC displayed 3 or more reddish papules of facial angiofibromas (≥2 mm in diameter), and had difficulty or did not desire to undergo laser therapy and/or surgery.
- Criteria: size and color evaluated 6 categories: "markedly improved," "improved," "slightly improved," "unchanged," "slightly aggravated," and "aggravated" by an independent review committee (IRC) comprising 3 blinded dermatologists.

Wataya-Kaneda M, et al Sirolimus Gel Treatment vs Placebo for Facial Angiofibromas in Patients With Tuberous Sclerosis Complex: A Randomized Clinical Trial. JAMA Dermatol. 2018 Jul 1;154(7):781-788. doi: 10.1001/jamadermatol.2018.1408. PMID: 29800026; PMCID: PMC6128500.

Composite Improvement and Age at Week 12 and at 4 Week Follow-Up OFF Medication

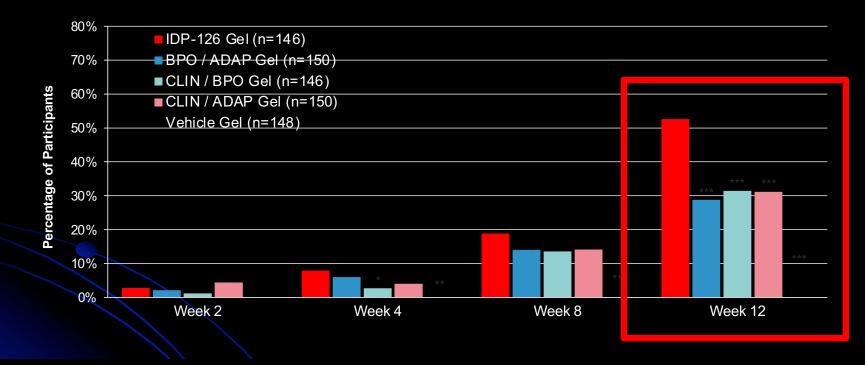
- Response rate:
 - Higher in pediatric (n = 13/85%) than in adult (n = 17/41%) subpopulations concerning the size but not color (46% vs 35%) of angiofibromas
 - Decreased at week 4 of follow-up reflecting the transient efficacy of mTOR inhibition by topical sirolimus.

 Angiomyolipomas¹ in patients with TSC and lymphangioleiomyomatosis² recurred after discontinuation of their oral sirolimus treatment.

1 Bissler JJ, McCormack FX, Young LR, et al.. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008;358(2):140-151. [PMC free article] [PubMed] [Google Scholar] 2. McCormack FX, Inoue Y, Moss J, et al.; National Institutes of Health Rare Lung Diseases Consortium; MILES Trial Group . Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364(17):1595-1606.

Warnings: DO NO USE IF...

- You have a skin infection at the treatment site
- You have high cholesterol or high triglycerides in your blood
- You are scheduled to receive an immunization (vaccine). You should avoid receiving live vaccines during treatment with HYFTOR. Vaccines may be less effective during treatment with HYFTOR.
- You are pregnant or plan to become pregnant. HYFTOR may harm your unborn baby. You should not become pregnant during HYFTOR treatment
 - Females who are able to become pregnant should use effective birth control (contraception) before starting treatment with HYFTOR, during treatment, and for 12 weeks after your final dose of HYFTOR. Talk to your healthcare provider about types of birth control that you can use during this time.
- You are breastfeeding or plan to breastfeed. It is not known if HYFTOR passes into breast milk. You should not breastfeed during treatment with HYFTOR.

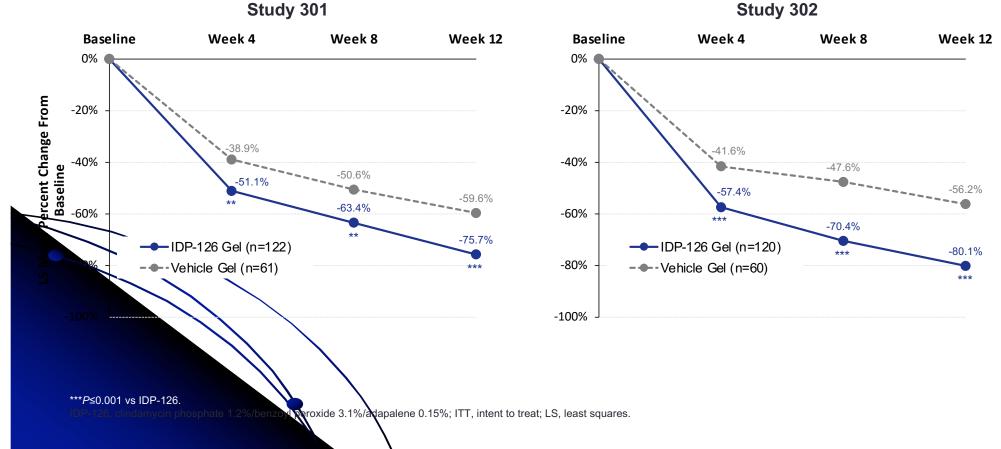

Does a <u>Triple Combo</u> Acne Medication Work Better Than A <u>Two Drug Combo</u> Treating Acne?

IDP-126: 1.2% clindamycin phosphate + 3.1% benzoyl peroxide + 0.15% adapalene

VS

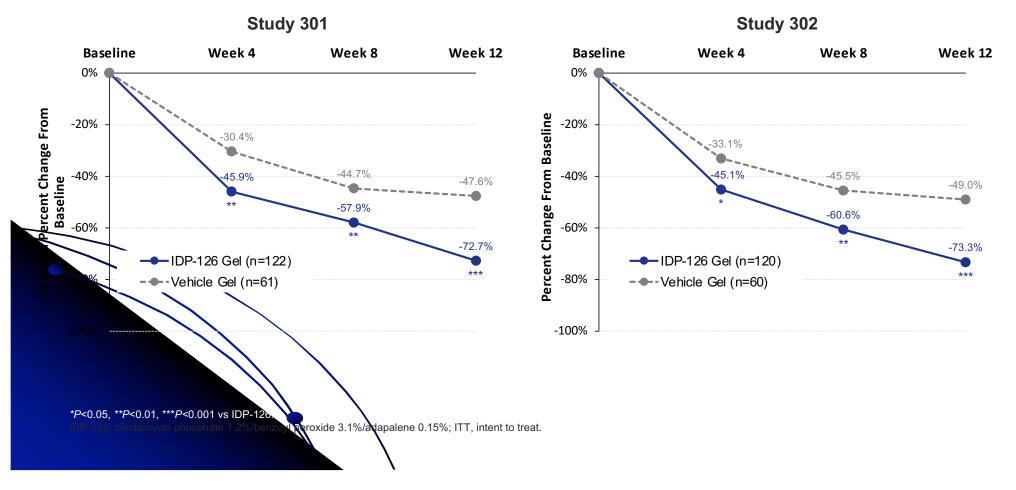
BPO/Adapalene Gel AND Clinda/Adapalene Gel AND Clinda/BPO Gel

Phase 2: Treatment Success Through Week 12


[∗]*P*<0.05; ***P*<0.01; ****P*≤0.001 vs IDP-126.

Treatment success defined as at least a 2-grade reduction from baseline in EGSS and a score of 0 (clear) or 1 (almost clear).

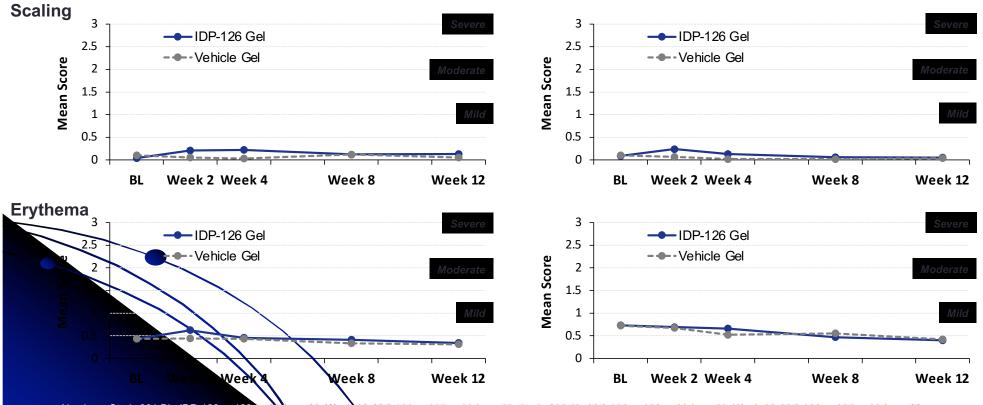
ADAP, adapalene 0.15%; BPO, benzoyl peroxide 3.1%; CLIN, clindamycin phosphate 1.2%; EGSS, Evaluator's Global Severity Score; IDP-126, clindamycin phosphate 1.2%/benzoyl peroxide 3.1%/adapalene 0.15%.


Phase 3 Efficacy: % Reductions in Inflammatory Lesion Counts **ITT** Population

PHASE 3

Study 302

Phase 3 Efficacy: % Reductions in Noninflammatory Lesion Counts

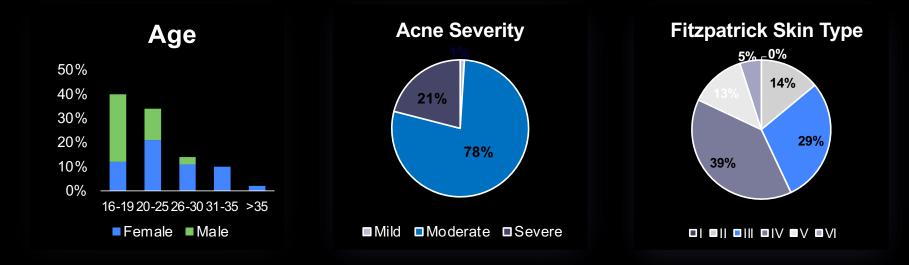


Phase 3 Cutaneous Safety

Safety Population

Study 301

Study 302


N values: Study 301 BL: IDP-126 n=122, vehicle n=61; Week 12: IDP-126 n=107, vehicle n=55; Study 302 BL: IDP-126 n=120, vehicle n=60; Week 12: IDP-126 n=107, vehicle n=55. BL, baseline; IDP-126, clindamycin phosphate, 12%/benzoyl peroxide 3.1%/adapalene 0.15%.

Treatment of Mild, Moderate and Severe Acne with a 1726 nm Laser

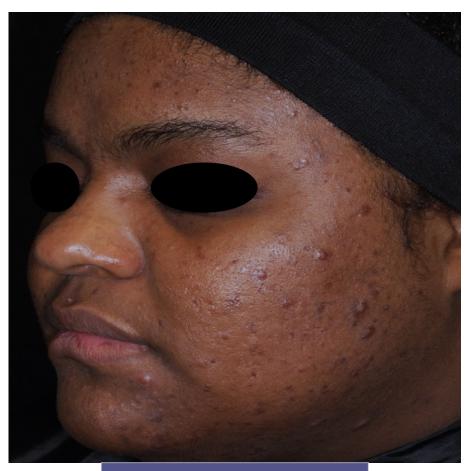


Pivotal Clinical Study³

- Non-randomized open label study
- 104 subjects, ≥16 years, with mild to severe acne vulgaris
- Three, 30-minute laser treatments spaced 1 month apart
- Primary endpoint was patients who achieved a 50% reduction in lesion count by 3 months after final treatment.
- Post-treatment follow-ups at 1, 3, 6, 12 months after final treatment session

Primary Endpoint and Inflammatory Lesion Reduction³

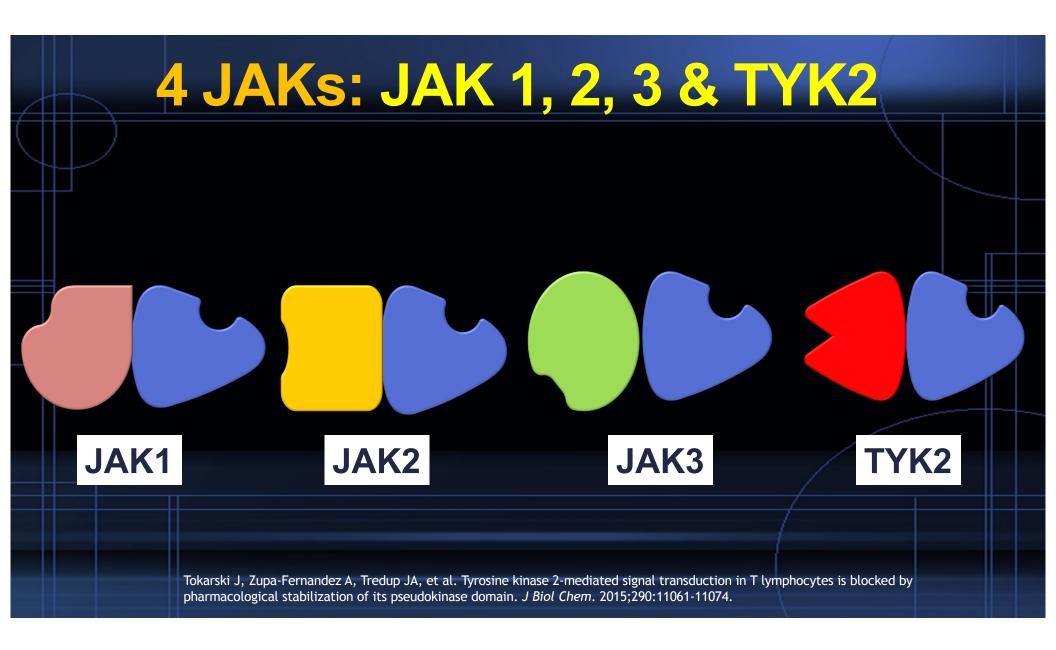
Patient Photos³

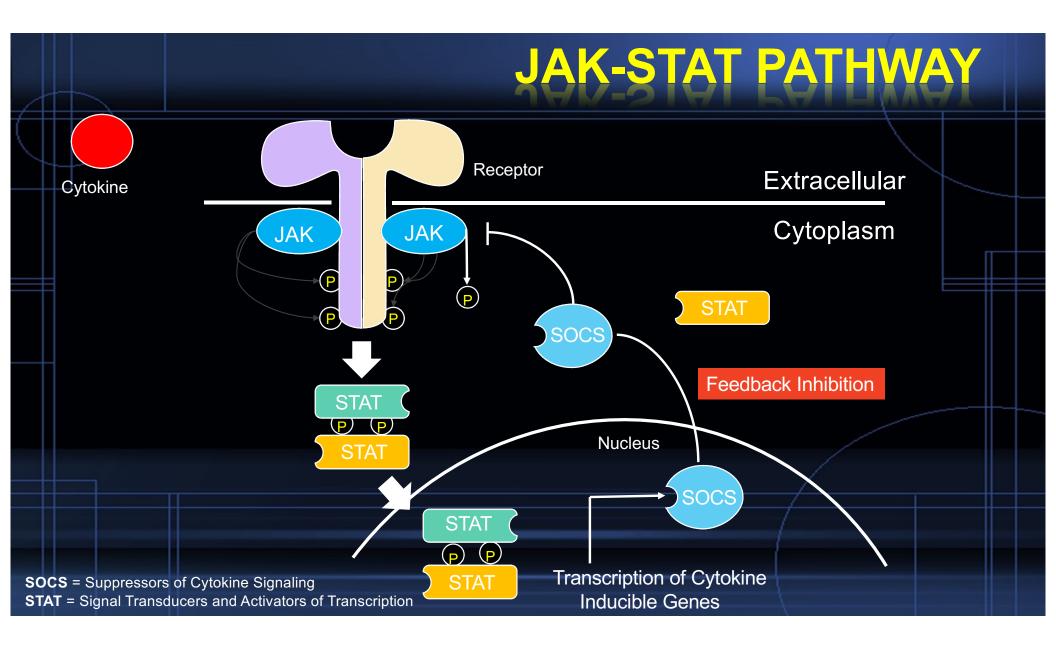


Baseline,

6 Months After Final Treatment Session 2 Months After Final Treatmen Session

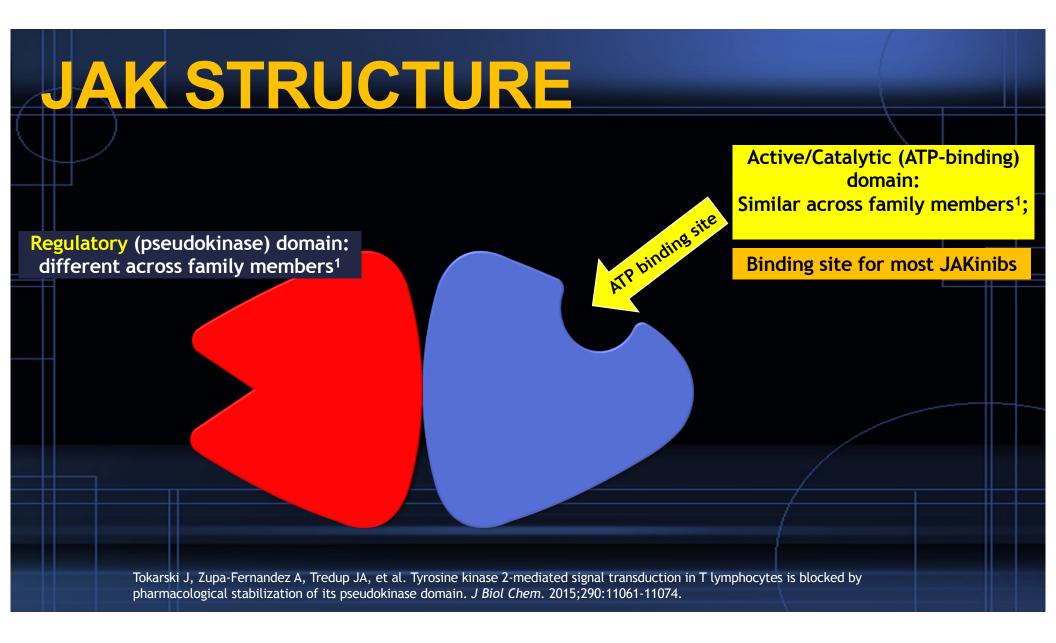
Patient Photos

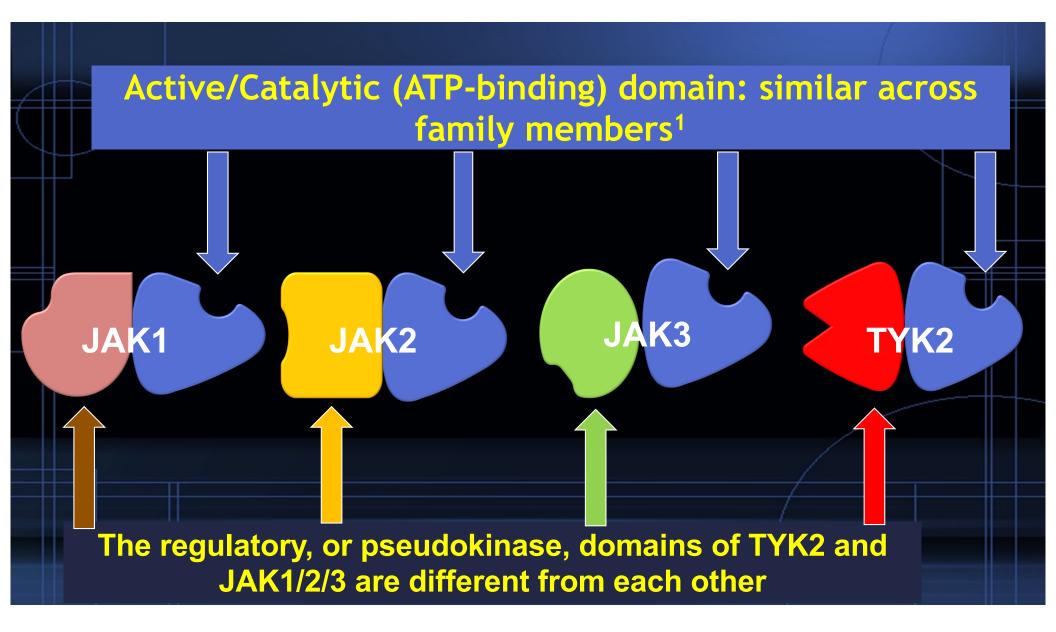




Baseline, Severe

6 Months After Final Treatment Session, Moderate

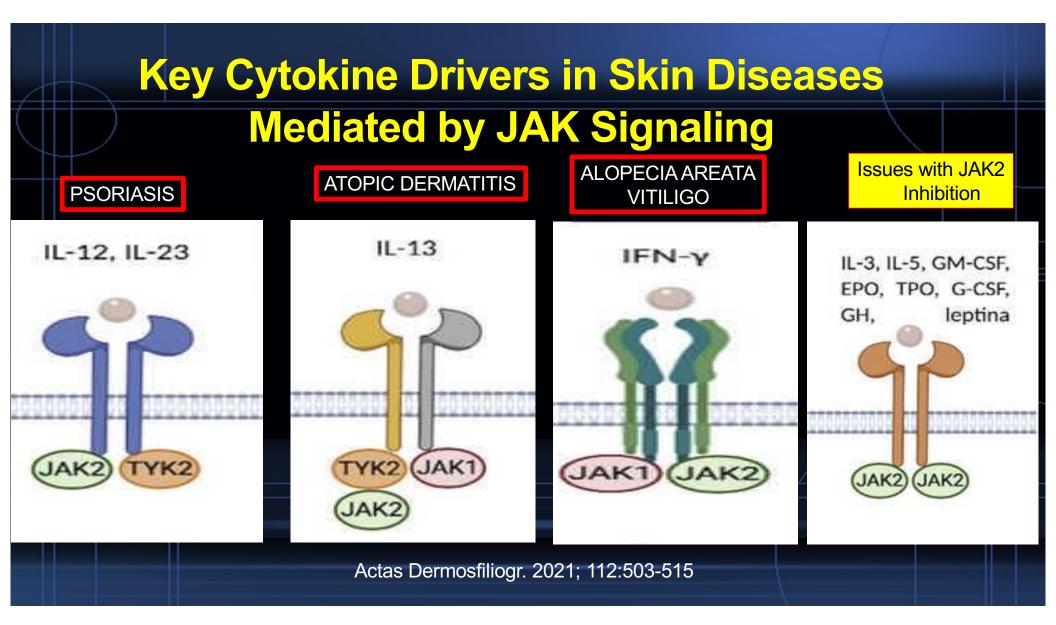

Over 50 Cytokines Signal Through The JAK-STAT Pathway


This group is perhaps the largest cytokine pathway

Comprises:

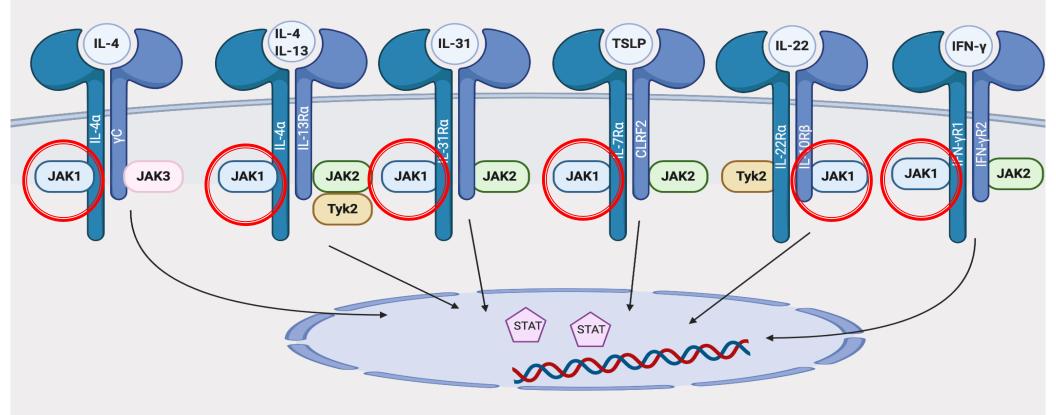
- Hematopoietic growth factors such as EPO
- Immunomodulatory cytokines such as IL-2
- Inflammatory cytokines such as IFN- γ

Abbreviation	Name	Major Functions
Class I cytokines IL-2 family		
IL-2 Junuy IL-2	Interleukin-2	Immune response, T-cell differentiation
IL-2 IL-4	Interleukin-4	$T_{\rm H}^2$ differentiation
IL-4 IL-7	Interleukin-7	T-, B-cell growth factor
IL-9	Interleukin-9	Pleiotropic, Stimulates, T-, B- and NK cells
IL-15	Interleukin-15	Stimulates T- and NK-cells
IL-21	Interleukin-21	Stimulates, T-, B- and NK cells
IL-3 family		Sumatures, 1, 2 and 101 cons
IL-3	Interleukin-3	Multi-lineage haematopoietic growth factor
IL-5	Interleukin-5	B-cell development, eosinophils
GM-CSF	Granulocyte/Macrophage	Multi-lineage haematopoietic growth factor,
	Colony Stimulating Factor	especially monocytes, neutrophils,
		eosinophils and basophils
IL-6 family		
IL-6	Interleukin-6	Pleiotropic, haematopoiesis, acute phase response,
		lymphoid differentiation
LIF	Leukemia Inhibitory Factor	Pleiotropic, blastocyst implantation, bone remodeling, CNS
CNTF	Ciliary NeuroTrophic growth Factor	Neuronal growth factor
CT1	Cardiotrophin 1	Cardiac myocytes growth factor
CLC	Cardiotrophin-like cytokine	Neurological growth factor
OSM	Oncostatin M	Pleiotropic, bone formation
IL-31	Interleukin-31	Inflammatory, cell-mediated immunty
NP	Neuropoietin	Neural growth factor
Homodimeric		
G-CSF	Granulocyte Colony	Stimulates granulocyte production, mobilises stem cells
	Stimulating Factor	
EPO	Erythropoietin	Stimulates formation of erthrocytes
TPO	Thrombopoietin	Stimulates formation of megakaryocytes/platelets
GH	Growth Hormone	Growth
PRL	Prolactin	Milk production
LEP	Leptin	Regulates appetite
Others		6 h. m. h
IL-12	Interleukin-12	Stimulates T- and NK-cells
IL-13	Interleukin-13	Pleiotropic, airway epithelia, allergic response
IL-23	Interleukin-23	Inflammation
TSLP	Thymic Stromal LymphoPoietin	Inflammatory, stimulates T- and B-cells
Class II cytokines		
Type I interferon		
IFNα	Interferon alpha (23 subtypes)	Anti-viral, secreted by lymphocytes, fibroblasts and monocytes
IFNβ	Interferon beta	Anti-viral, ubiquitously expressed
IFNε	Interferon epsilon	Anti-viral, expressed in female reproductive tract
IFNĸ	Interferon kappa	Anti-viral, expressed by keratinocytes
IFNω	Interferon omega	Anti-viral, secreted by leukocytes
Type II interferon	-	
IFNγ	Interferon gamma	Pro-inflammatory, secreted by T- and NK-cells,
		activates macrophages/monocytes
Type III interferon		
IFNλ1	Interferon lambda1	Anti-viral, similar to type I but acts on fewer cell-types
IFNλ2	Interferon lambda2	Anti-viral, similar to type I but acts on fewer cell-types
IFN ₃	Interferon lambda3	Anti-viral, similar to type I but acts on fewer cell-types
IL-10 family		
IL-10	Interleukin-10	Anti-inflammatory, inhibits macrophage activation
IL-19	Interleukin-19	Inflammatory, acts on dermal cells
IL-20	Interleukin-20	Inflammatory, acts on dermal cells
IL-22	Interleukin-22	Inflammatory, secreted by Th1 cells, acts on dermal cells
	Interleukin-24	Inflammatory, acts on dermal cells
IL-24 IL-26	Interleukin-24 Interleukin-26	Antimicrobial, $T_H 17$ cytokine



Broad Overview: Systems Affected By Cytokines Signaling Through JAK1, 2, 3,TYK2

* SYSTEMS IMPACTED BY JAKinibs	JAK1	JAK2	ЈАКЗ	түка
Immune system	\checkmark	\checkmark	\checkmark	\checkmark
Hematopoietic		\checkmark		
Metabolic activity	\checkmark	\checkmark	\checkmark	
Bone development & lipid metabolism	✓	\checkmark		


★ Adapted with permission from a BMS slide; Above list is incomplete but representative of some of the systems impacted by JAK inhibition JAK=Janus kinase; TYK2=tyrosine kinase 2.

ATOPIC DERMATITIS

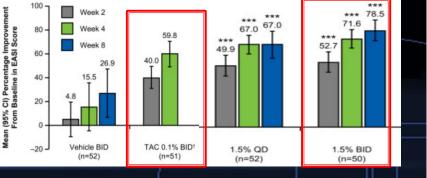
Key Cytokines in AD Mediated By The JAK1 Pathway

Note: All are mediated in part by JAK1

DRUG	MOA	FDA Approved (Under investigation)	
Ruxolitinib cream 1.5% QD Opzelura® Short-term, Non-continuous use	JAK1/2 inhibitor	Approved: Mild-moderate AD: Up to 20% BSA (9/21) Non-segmental Vitiligo ≥ 12 yo (7/22) (Mild-moderate PsO: phase 2 completed) (Alopecia Areata) (Hidradenitis Suppurativa)	
Topical Tapinarof 1% Cream QD VTAMA® Continuous Use	Aryl hydrocarbon receptor modulating agent	Plaque PsO in adults Approved 5/22 → (Mid-moderate AD) (Alopecia Areata) (Vitiligo)	
Topical Roflumilast Cream (& Foam) 0.3% QD Continuous Use	High potency PDE4 inhibitor	Plaque PsO ≥ 12 yo Approved 7/22 → (Mild-moderate AD) (Seborrheic dermatitis) (Scalp PsO)	

1.5% Ruxolitinib Cream: Opzelura® (JAK 1,2)

Approved Sept 22, 2021


- Short term, noncontinuous treatment of mild to moderate atopic dermatitis in nonimmunocompromised patients >12 yo, not adequately controlled by topical Rx or if other Rx not advisable
- First topical JAK inhibitor: JAK 1 and JAK 2 inhibition
- BID application to < 20% BSA, no more than 60g/week

8 Week Phase 3 Studies	RUXOLITINIB Cr.	VEHICLE
IGA Success (0-1, 2 grade improvement)	51.3-53.8%	7.6-15.1%
ITCH NRS (<u>></u> 4 point improvement)	50.7-52.2%	15.4-16.3%

1.5% Ruxolitinib Cream: It Doesn't Burn or Sting; Works BETTER Than Triamcinolone

n (%)	Vehicle (n=250)	RUX 0.75% (n=500)	RUX 1.5% (n=499)
Any AE	84 (34)	147 (29)	131 (26)
Application site reactions Burning Pruritus	10 (4) 6 (2)	2 (0.4) 4 (1)	4 (1) 0
Discontinuation due to AE	8 (3)	4 (1)	3 (1)
Serious AEs ^a	2 (1)	4 (1)	3 (1)
^a No serious AEs were related to ruxolitinib treatment			

Mean % Improvement From Baseline in EASI Score

Kim BS et al. J Allergy Clin Immunol. 2020 Feb;145(2):572-582

Adverse Events			
Adverse Reaction	1.5% Ruxolitinib (N=499) n (%)	Vehicle (N=250) n (%)	
Subjects with any TEAE*	132 (27)	83 (33)	
Nasopharyngitis	13 (3)	2 (1)	
Bronchitis	4 (1)	0 (0)	
Ear infection	4 (1)	0 (0)	
Eosinophil count increased	4 (1)	0 (0)	
Urticaria	4 (1)	0 (0)	
Diarrhea	3 (1)	1 (< 1)	
Folliculitis	3 (1)	0 (0)	
Tonsillitis	3 (1)	0 (0)	
Rhinorrhea	3 (1)	1 (< 1)	

WARNING: SERIOUS INFECTIONS, MORTALITY, MALIGNANCY, MAJOR ADVERSE CARDIOVASCULAR EVENTS, AND THROMBOSIS

SERIOUS INFECTIONS

Patients treated with oral Janus kinase inhibitors for inflammatory conditions are at risk for developing serious infections that may lead to hospitalization or death *[see Warnings and Precautions (5.1) and Adverse Reactions (6.1)].*

Reported infections include:

- Active tuberculosis, which may present with pulmonary or extrapulmonary disease.
- Invasive fungal infections, including candidiasis and pneumocystosis.
- Bacterial, viral, and other infections due to opportunistic pathogens.

Avoid use of OPZELURA in patients with an active, serious infection, including localized infections. If a serious infection develops, interrupt OPZELURA until the infection is controlled.

The risks and benefits of treatment with OPZELURA should be carefully considered prior to initiating therapy in patients with chronic or recurrent infection.

Patients should be closely monitored for the development of signs and symptoms of infection during and after treatment with OPZELURA [see Warnings and Precautions (5.1)].

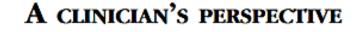
MORTALITY

Higher rate of all-cause mortality, including sudden cardiovascular death have been observed in patients treated with oral Janus kinase inhibitors for inflammatory conditions *[see Warnings and Precautions (5.2)].*

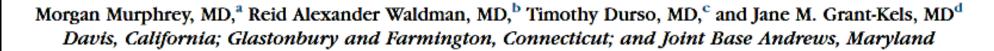
MALIGNANCIES

Lymphoma and other malignancies have been observed in patients treated with Janus kinase inhibitors for inflammatory conditions [see Warnings and Precautions (5.3)].

MAJOR ADVERSE CARDIOVASCULAR EVENTS (MACE)


Higher rate of MACE (including cardiovascular death, myocardial infarction, and stroke) has been observed in patients treated with Janus kinase inhibitors for inflammatory conditions [see Warnings and Precautions (5.4)].

THROMBOSIS


Thrombosis, including deep venous thrombosis, pulmonary embolism, and arterial thrombosis has been observed at an increased incidence in patients treated with oral Janus kinase inhibitors for inflammatory conditions compared to placebo. Many of these adverse reactions were serious and some resulted in death. Patients with symptoms of thrombosis should be promptly evaluated *[see Warnings and Precautions (5.5)]*.

BLACK BOX WARNINGS! Serious infection, All Cause Mortality, Malignancy, MACE, Thrombosis INCLUDED EVEN IN TOPICALS

59

Special editorial: When prescribing Janus kinase inhibitors for dermatologic conditions, be mindful of the Food and Drug Administration's September 1, 2021, data safety communication

Much of the expanded Black Box warning came from ORAL study, exclusively studying older RA patients, with underlying CV risk factors; Is this generalizable to ALL JAKiibs?

J Am Acad Dermatol. 2022;86(1):42-43

ORAL JAKinibs For Atopic Dermatitis

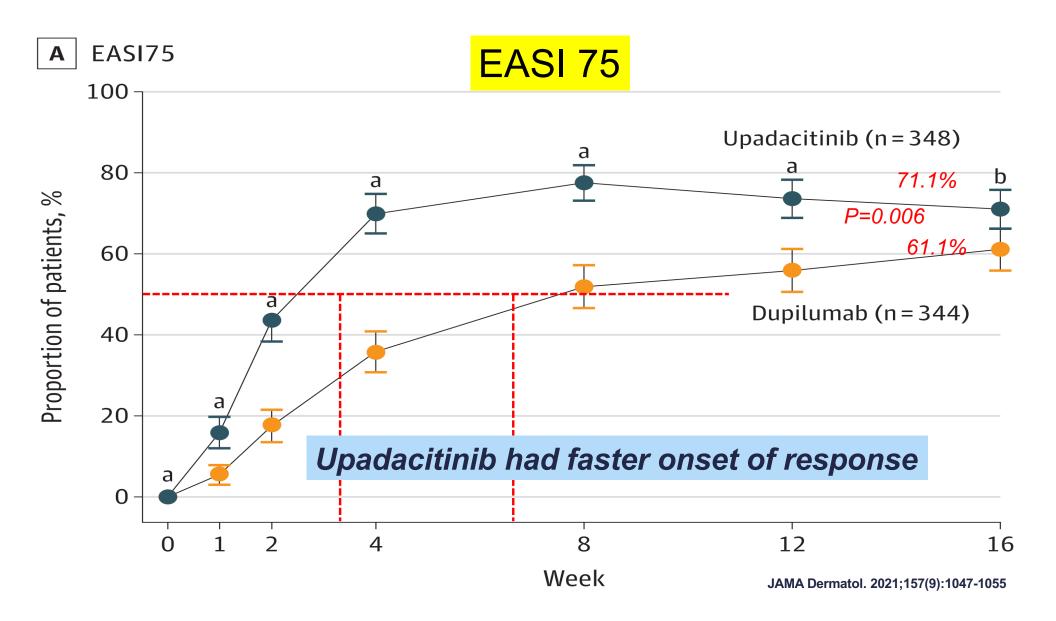
Abrocitinib (Cibinqo[®]) JAK1: FDA approved January, 2022 for AD

Upadacitinib (Rinvoq®) JAK1: FDA-approved January, 2022 for AD

Baricitinib (Olumiant[®]) JAK1/2: AD phase 3 completed; approval status?

Oral JAKinibs Approved in Atopic Dermatitis

Upadacitinib (Rinvoq®) : JAK1 inhibitor


- Treatment of refractory <u>moderate to severe</u> atopic dermatitis in non-immunocompromised patients >12 yo, >40kg, who are not adequately controlled by systemic Rx or if other Rx not advisable
- 15 mg/day; can increase to 30 mg/day
- Abrocitinib (Cibinqo®): JAK1 inhibitor
 - Treatment of refractory <u>moderate to severe</u> atopic dermatitis in non-immunocompromised adult (age 12 and older) not adequately controlled by systemic Rx or if other Rx not advisable
 - 100 mg/day; can increase to 200mg/day

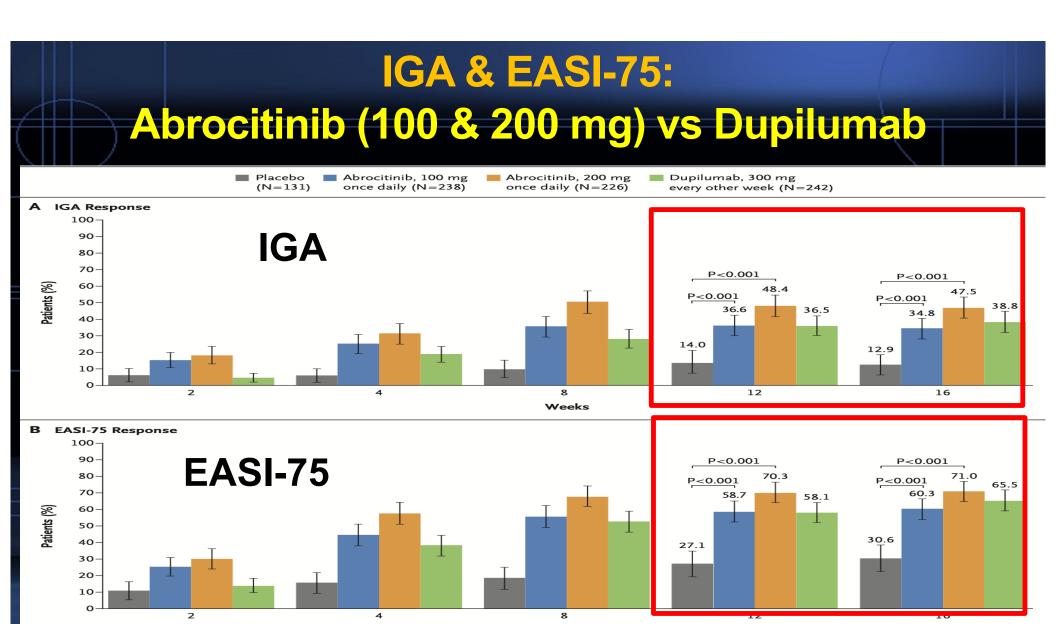
Upadacitinib vs. Dupilumab

JAMA Dermatology | Original Investigation

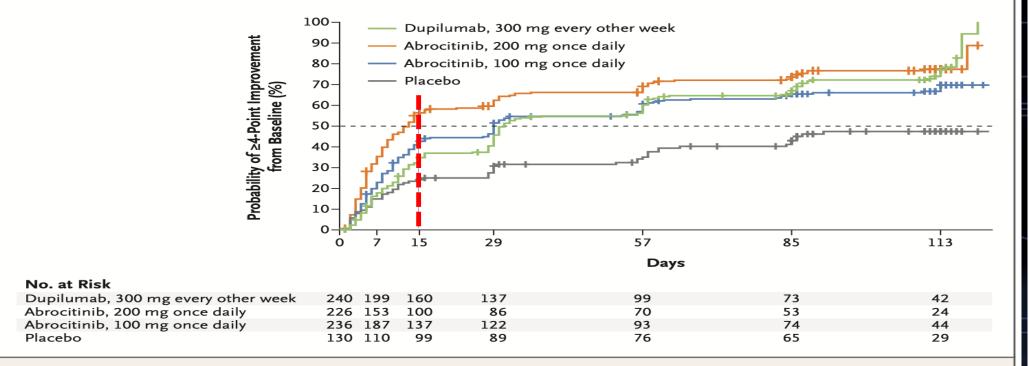
Efficacy and Safety of Upadacitinib vs Dupilumab in Adults With Moderate-to-Severe Atopic Dermatitis A Randomized Clinical Trial

Andrew Blauvelt, MD, MBA; Henrique D. Teixeira, PhD, MBA; Eric L. Simpson, MD, MCR; Antonio Costanzo, MD; Marjolein De Bruin-Weller, MD; Sebastien Barbarot, MD, PhD; Vimal H. Prajapati, MD; Peter Lio, MD; Xiaofei Hu, PhD; Tianshuang Wu, PhD; John Liu, MD, MS; Barry Ladizinski, MD, MPH, MBA; Alvina D. Chu, MD; Kilian Eyerich, MD

Heads Up Results at Week 16*,1				
	Dupilumab (300 mg) (n=344)	Upadacitinib (30 mg) (n=348)		
EASI 75 ^a	61%	71%		
EASI 90 ^b	39%	61%		
EASI 100 د	8%	28%		
Percent Change from Baseline in Worst Pruritus NRS ^d	-49%	-67%		
Worst Pruritus NRS Improvement ≥4 ^e (Dupilumab, n=336) (Upadacitinib, n=340)	36%	55%		


The **NEW ENGLAND JOURNAL** *of* **MEDICINE** N Engl J Med 2021;384:1101-12.DOI: 10.1056/NEJMoa2019380

ORIGINAL ARTICLE


Abrocitinib versus Placebo or Dupilumab for Atopic Dermatitis

T. Bieber, E.L. Simpson, J.I. Silverberg, D. Thaçi, C. Paul, A.E. Pink, Y. Kataoka, C.-Y. Chu, M. DiBonaventura, R. Rojo, J. Antinew, I. Ionita, R. Sinclair, S. Forman, J. Zdybski, P. Biswas, B. Malhotra, F. Zhang, and H. Valdez, for the JADE COMPARE Investigators*

- 1. The trial was NOT formally designed to evaluate the superiority of abrocitinib over dupilumab with respect to the two primary end points.
- 2. Abrocitinib at a dose of either 200 mg or 100 mg once daily resulted in significantly greater reductions in signs and symptoms of moderate-to-severe atopic dermatitis than placebo at weeks 12 and 16.
- 3. The 200-mg dose, but not the 100-mg dose, of abrocitinib was superior to dupilumab with respect to itch response at week 2.
- 4. Neither abrocitinib dose differed significantly from dupilumab with respect to most other key secondary end-point comparisons at week 16.

Abrocitinib (100 & 200 mg) vs Dupilumab: Itch Response

Figure 1. Median Time to Itch Response.

Itch response was defined as an improvement from baseline of at least 4 points in the score on the Peak Pruritus Numerical Rating Scale, on which scores range from 0 to 10, with higher scores indicating greater severity of pruritus.

Safety Of Oral JAK Inhibitors

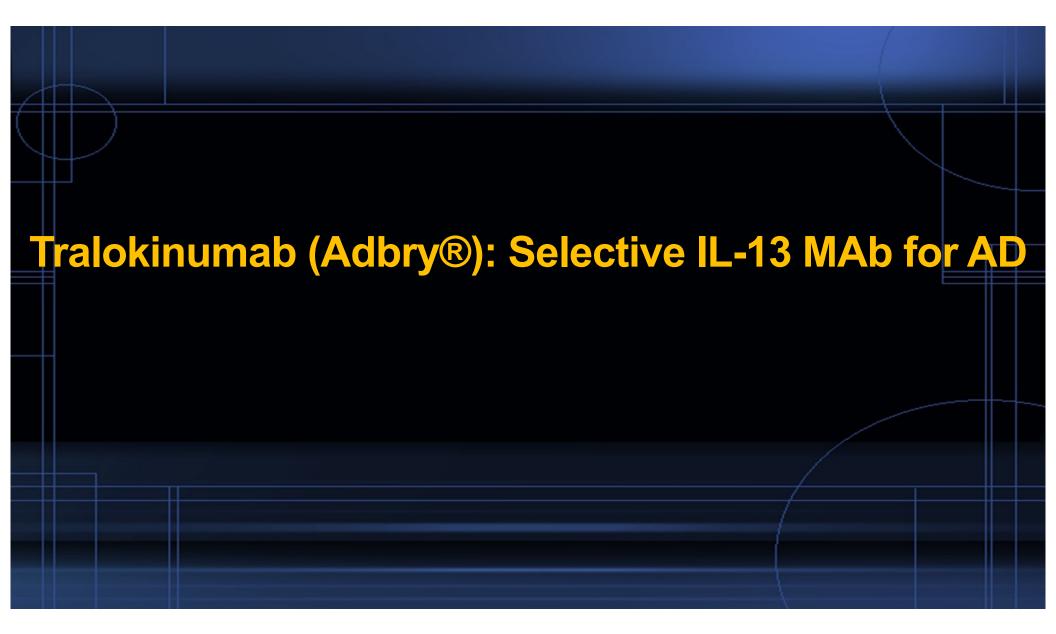
Black box warnings: in abrocitinib and upadacitinib

- Serious infection: (opportunistic infections)
- Malignancy (lymphoma)
- Thrombosis (DVTs, PEs)

Recommended lab monitoring:

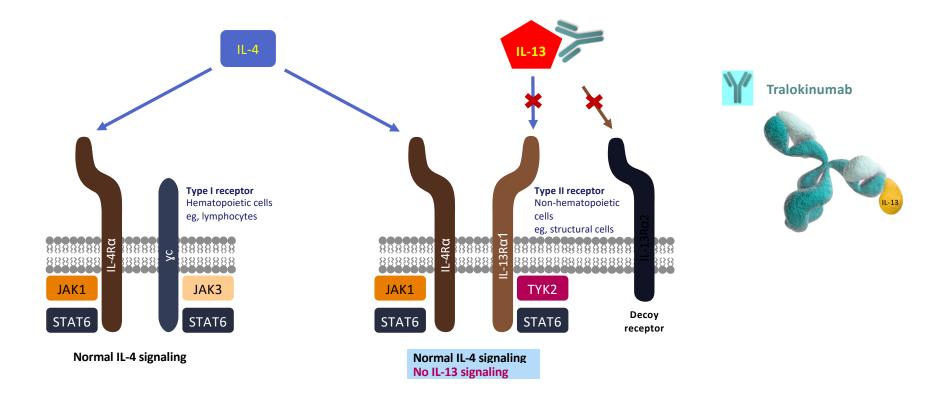
- LFTs
- CBC
- Lipids

Monoclonal Antibodies in AD


Monoclonal Antibodies in AD

Approved for AD

- Dupilumab: IL4α Receptor MAb (Dupixent®): Approved ≥ 6 months and older
 - Phase 3 Study 6 month 5 yo (presented here in later slide)
- □ Tralokinumab: IL-13 Mab (Adbry®): Approved 12/21 for ≥ 18 yo
 - Phase 3 Studies completed in adolescents: 12-17 yo


Being Studied in AD

- □ Lebrikizumab (IL-13 MAb): Phase 3 completed in \ge 12 yo
- Nemolizumab (IL-31 MAb): Phase 2b completed; phase 3 ongoing

Tralokinumab: Selective Targeting IL-13: Approved for AD 12/21

Tralokinumab is a fully human monoclonal antibody that specifically binds to the IL-13 cytokine and inhibits downstream signaling

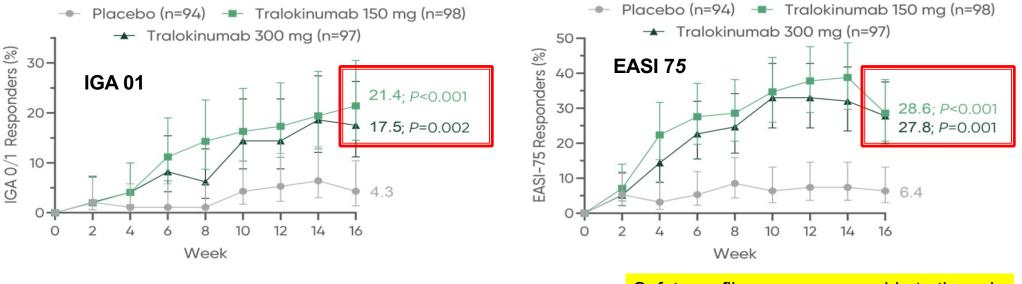
yc, common gamma chain; STAT, signal transducer and activator of transcription; TYK, tyrosine kinase. May RD et al. *Br J Pharmacol.* 2012;166:177-93; Popovic B et al. *J Mol Biol.* 2017;429:208-19; Bieber T. *Allergy.* 2020;75:54-62.

Tralokinumab (Adbry®): Selective IL-13 MAb for AD

- Approved for AD patients 18 yrs and older
- 600 mg loading dose -> 300 mg q2 weeks (150 mg pre-filled syringes)
- Can increase dose interval to q 4 weeks at 16 weeks if IGA 0/1 and < 220 lbs

Tralokinumab (Adbry®): Adolescents (12-17 yo) w/ AD

Efficacy and safety of tralokinumab in adolescents with moderate-to-severe atopic dermatitis: results of the phase 3 ECZTRA 6 trial


Amy Paller¹, Andrew Blauvelt², Weily Soong³, Shinichi Imafuku⁴, Chih-ho Hong⁵, Marie L.A. Schuttelaar⁶, Petra Amoudruz⁷, Azra Kurbasic⁷, Lise Soldbro⁷, Katja Lophaven⁷, Michael Cork⁸, Anthony Bewley⁹, Eric L. Simpson¹⁰

Tralokinumab (Adbry®): Adolescents (12-17 yo) w/ AD

Tralokinumab treatment demonstrated efficacy vs placebo across endpoints at Week 16

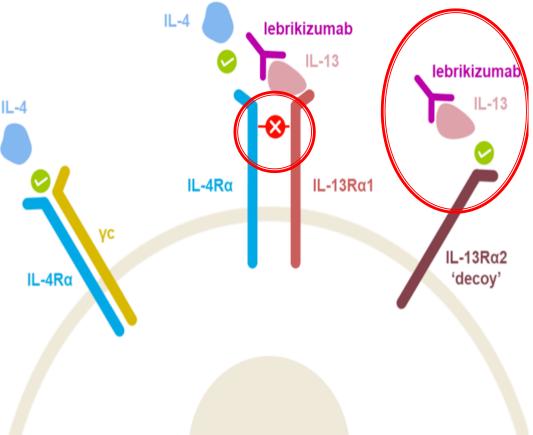
At Week 16, significantly greater proportions of patients receiving tralokinumab achieved the primary endpoints of IGA 0/1 and EASI-75 without use of rescue compared to those receiving placebo

150 mg and 300 mg Q2W

Error bars show 95% confidence intervals. P-values compare respective tralokinumab dose to placebo. IGA: Investigator's Global Assessment, EASI: Eczema Area and Severity Index.

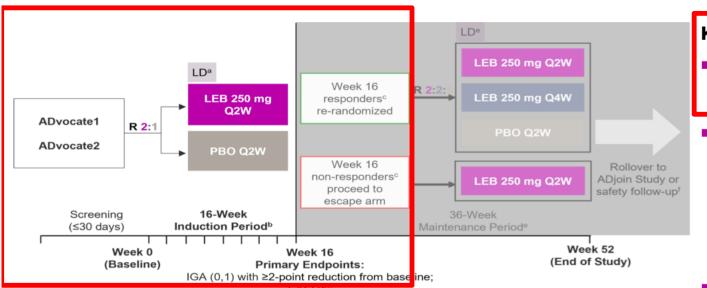
Safety profiles were comparable to those in Phase 3 adult tralokinumab trials

Fall Clinical Dermatology Conference, October 21-24, 2021


LEBRIKIZUMAB: IL-13 Selective Mab in AD (COMING, NOT YET APPROVED)

LEBRIKIZUMAB: IL-13 Selective Mab in AD

Lebrikizumab is a novel, high-affinity immunoglobulin G4 monoclonal antibody targeting interleukin (IL)-13


- Lebrikizumab selectively prevents formation of the IL-13Rα1/IL-4Rα heterodimer receptor signaling complex, thus blocking IL-13 signaling^{1,2}
- Lebrikizumab does not prevent the binding of IL-13 to the IL-13Rα2 (decoy) receptor, which allows the internalization of IL-13 into the cell³
 - 1. Simpson EL, et al. J Am Acad Dermatol. 2018;78:863-871.e11.
 - 2. Gonçalves F, et al. Drugs Context. 2021;10:2021-1-7.

3. Wulur I, et al. Presented at 4th Inflammatory Skin Disease Summit. 2021. *IL=interleukin*

Lebrikizumab: Phase 3 Study Design

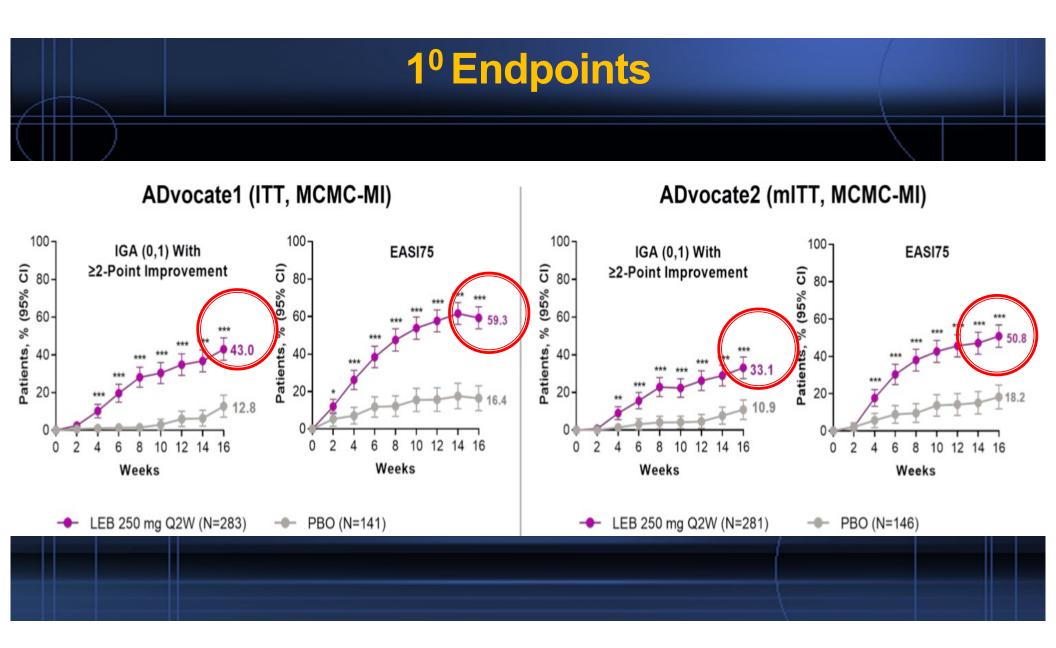
STUDY DESIGN

Key Eligibility Criteria

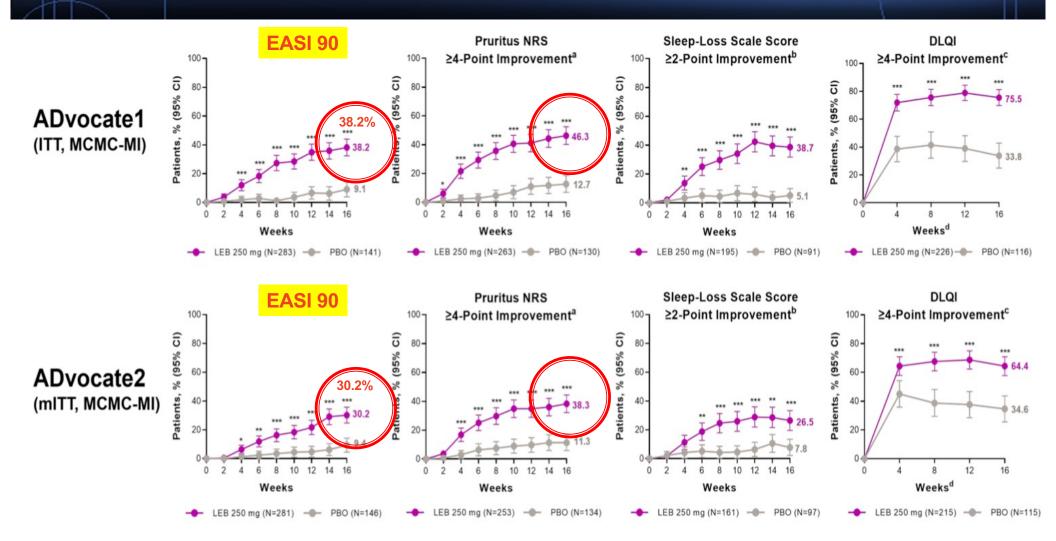
- Adults ≥18 years old and adolescents (≥12 to <18 years old; weighing ≥40 kg)
- Moderate-to-severe AD:
 - Eczema Area and Severity Index (EASI) score ≥16
 - Investigator's Global Assessment (IGA) score ≥3
 - Body surface area % involvement ≥10%
- Chronic AD for ≥1 year for whom topical treatment was inadequate or inadvisable
- Dupilumab and tralokinumab naïve

	ADvoca	te1 (ITT)	ADvocate2 (mITT)			
	PBO Q2W (N=141)	LEB 250 mg Q2W (N=283)	PBO Q2W (N=146)	LEB 250 mg Q2W (N=281)		
Any rescue medication ^a	47 (33.3)	30 (10.6)	58 (39.7)	56 (19.9)		
Topical rescue medication	44 (31.2)	27 (9.5)	54 (37.0)	52 (18.5)		
Low-/mid-potency TCS	38 (27.0)	21 (7.4)	24 (16.4)	28 (10.0)		
High-potency TCS	15 (10.6)	6 (2.1)	36 (24.7)	25 (8.9)		
Topical calcineurin inhibitor	9 (6.4)	3 (1.1)	6 (4.1)	11 (3.9)		
Systemic rescue medication	11 (7.8)	6 (2.1)	9 (6.2)	8 (2.8)		

USE OF RESCUE MEDICATION THROUGH WEEK 16


ction Period were considered to be non-responders $\ensuremath{\mathsf{EASI75}}$ at Week 16

tors and as a major secondary endpoint by the FDA eived an LD of LEB 500 mg at Week 16 or at


e Maintenance Period

otherwise, patients participated in a safety follow-up 12 weeks after their last dose

5=75% reduction from baseline in EASI score; FDA=US Food and Drug Administration; LD=loading dose; LEB=lebrikizumab; nization

2⁰ Endpoints: EASI 90 & ITCH

Transient AEs Through Week 16

	ADvocate1 (S	afety Population)	ADvocate2 (Modified Safety Population)			
	PBO Q2W (N=141)	LEB 250 mg Q2W (N=282)	PBO Q2W (N=145)	LEB 250 mg Q2W (N=281)		
Any TEAE	72 (51.5)	128 (45.4)	96 (66.2)	149 (53.0)		
Mild	34 (24.1)	78 (27.7)	40 (27.6)	73 (26.0)		
Moderate	31 (22.0)	44 (15.6)	49 (33.8)	69 (24.6)		
Severe	7 (5.0)	6 (2.1)	7 (4.8)	7 (2.5)		
Most common TEAEs (25% in either LEB group)						
Conjunctivitis ^a	4 (2.8)	21 (7.4)	3 (2.1)	22 (7.8)		
Exacerbation of AD	28 (19.9)	15 (5.3)	37 (25.5)	28 (10.0)		
Nasopharyngitis	3 (2.1)	11 (3.9)	3 (2.1)	14 (5.0)		
Headache	2 (1.4)	9 (3.2)	6 (4.1)	14 (5.0)		
Serious AE ^b	1 (0.7)	6 (2.1)	4 (2.8)	2 (0.7)		
Death	0	0	1 (0.7)	0		
AEs leading to treatment discontinuation ^b	1 (0.7)	3 (1.1)	4 (2.8)	8 (2.8)		
Injection site reactions	3 (2.1)	3 (1.1)	1 (0.7)	7 (2.5)		
Herpes infections	6 (4.3)	9 (3.2)	6 (4.1)	8 (2.8)		

All conjunctivitis treatment-emergent adverse events (TEAEs) were mild-to-moderate in severity; the majority of conjunctivitis-related TEAEs did not lead to treatment discontinuation

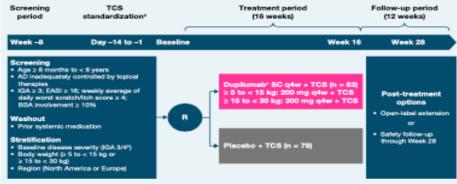
Data are n (%)

^a Conjunctivitis single preferred term; ^b Deaths are also included as serious AEs and AEs leading to treatment discontinuation

AD=atopic dermatitis; AE=adverse event; LEB=lebrikizumab; PBO=placebo; Q2W=every 2 weeks; TEAE=treatment-emergent adverse event

Take Home Points

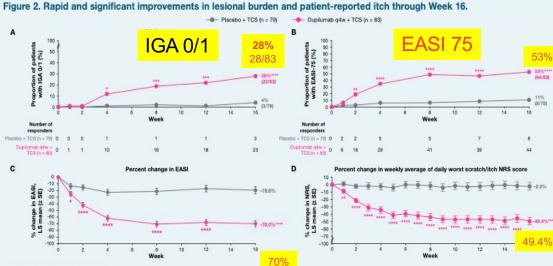
- Seeking approval in >12 yo. patients
- Dosing can be stretched to Q4 week after week 16 if patients improve clinically
- Conjunctivitis still an issue
- IGA 0/1 and EASI 75 & 90 highest we have seen yet for a biologicBUT.... no comparator trials yet to dupilumab and tralokinumab
- No comparator trial to a JAKinib


Dupilumab:

New indication: age 6 mo – 5 years
 New Approval: Prurigo Nodularis (9/2022)
 Studies in Urticaria (Phase 3)

Dupilumab + TCS: Phase 3 Studies 6 months - 5 Years

METHODS


Figure 1. Study design LIBERTY AD PRESCHOOL Part B (NCT03346434), a double-blind, placebo-controlled, phase 3 trial.

"Starting on Day -14, all patients were to initiate a standardized low-potency TCS treatment regimen (hydrocortisone acetate 1% cream). "Number of patients with IGA 3 was capped to 40.

'No loading dose. Weight-tiered doses were assigned by baseline body weight for the duration of the study.

BSA, body surface area; EASI, Eczema Area and Soverity Index; IGA, Investigator's Global Assessment; q4w, overy 4 weeks; R, randomization; SC, subcutaneous.

Values after first rescue treatment use were set to missing

(A). B) Fallomb with missing values at Week 16 due to reaccu treatment, withdrawn consent, AE, and lack of efficacy were considered as non-responders. Palents with missing values due to other reasons including COMD-19 were imputed by ML. (1), D) Palents with missing values at Week 16 due to reaccu treatment, withdrawn consent, AE, and lack of efficacy were imputed by WCCF Palents with missing values due to other reasons including COMD-19 were imputed by ML. (2), D) Palents with missing values at Week 16 due to reaccu treatment, withdrawn consent, AE, and lack of efficacy were imputed by WCCF Palents with missing values due to other reasons including COMD-19 were imputed by ML. At non-missing data before imputation of WCCF was used for ML (2), D) Palents with missing values at Week 16 due to reaccu treatment, withdrawn consent, AE, and lack of efficacy were imputed by WCCF. Palents with missing values due to other reasons including COMD-19 were imputed by ML. At non-missing data before imputed in WCCF was used for ML (2), D) Palents (2), D) and (2), D) an

AE, adverse event; EASI-75, 75% improvement from baseline in EASI; LS, least squares; MI, multiple imputation; SE, standard error; WOOF; worst observation carried forward

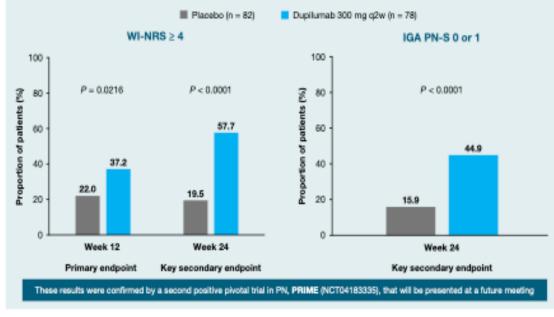
6 mo - 5 yrs: 5 to 15 kg is 200 mg q4 weeks (no loading dose) 6 mo - 5 yrs: 15 - 30 kg is 300 mg q4 weeks (no loading dose)

TEAE of special interest	0	1 (1.2) ^d
Conjunctivitis (narrow ^e)	0	4 (4.8)
Skin infection (excluding herpes infection)	19 (24.4)	10 (12.0)
Injection-site reactions (HLT)	2 (2.6)	2 (2.4)
Herpes viral infections (HLT)	4 (5.1) ^f	5 (6.0)°
*Serious TEAEs were atopic dermatitis, hypersensitivity, staphylococcal b	acteremia, and staphylococcal cellulitis.	All occurred in the placebo + TCS

proup and none led to study drug discontinuation. "Potient discontinued due to AE of nightmares due to blood draws. "Patient discontinued due to AE of AD finere. "AE of special interest of biopharetits. "Standardized MedDRA query containing conjunctivitis, discontinued due to AE of AD finere. "AE of special interest of biopharetits. "Standardized MedDRA query containing conjunctivitis, discontinued due bacterial, conjunctivitis viral, and atopic keratoconjunctivitis. "Oral herpes (2), eczema herpeticum, herpes simplex. "Herpes virus infection (2), varicelia (2), vari herpes. severe AD, dupilumab q4w + low-potency TCS rapidly and significantly improved AD signs and symptoms

 Dupilumab has demonstrated an acceptable safety profile, similar to that observed in older children and adults

Poster: Paller A., et al Maui Derm NPPA Summer 2022


Dupilumab for Prurigo Nodularis

Dupilumab Significantly Improves Itch and Skin Lesions in Patients With Prurigo Nodularis: Results From a Phase 3 Trial (LIBERTY-PN PRIME2)

Gil Yosipovitch¹, Nicholas Mollanazar², Sonja Ständer³, Shawn G. Kwatra⁴, Brian S. Kim⁵, Sheldon Wang⁶, Elizabeth Laws⁶, Ashish Bansal⁷, John T. O'Malley⁸

¹University of Miami, FL, USA; ²University of Pennsylvania, Philadelphia, PA, USA; ³University Hospital Münster, Münster, Germany; ⁴Johns Hopkins University School of Medicine, Baltimore, MD, USA; ⁵Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁶Sanofi, Bridgewater, NJ, USA; ⁷Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA; ⁸Sanofi, Cambridge, MA, USA

Figure 3. Proportion of patients with ≥ 4-point improvement in WI-NRS and IGA PN-S 0 or 1

Patients:

 PN pts with severe itch, high lesion count and impaired QOL
 Not controlled with topicals;
 had used systemic therapies
 No new safety signals; c/w known safety profile in AD

Poster Maui Derm NPPA Summer 2022

Dupilumab for Itch and Hives in Chronic Spontaneous Urticaria

Dupilumab Significantly Reduces Itch and Hives in Patients With Chronic Spontaneous Urticaria: Results From a Phase 3 Trial (LIBERTY-CSU CUPID Study A)

Marcus Maurer^{1,2}, Thomas B. Casale³, Sarbjit S. Saini⁴, Moshe Ben-Shoshan⁵, Allen Radin⁶, Bola Akinlade⁶, Chunpeng Fan⁷, Deborah Bauer⁷, Elizabeth Laws⁷, Leda P. Mannent⁸, Aleksandra Stjepanovic⁸

¹Institute of Allergology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; ²Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany; ³University of South Florida, Tampa, FL, USA; ⁴Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA; ⁵McGill University Health Centre, Montreal, QC, Canada; ⁸Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA; ⁷Sanofi, Bridgewater, NJ, USA; ⁸Sanofi, Chilly-Mazarin, France

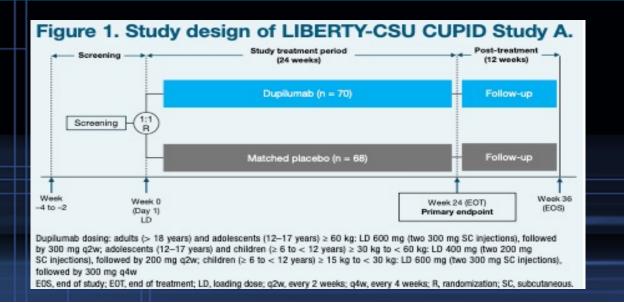
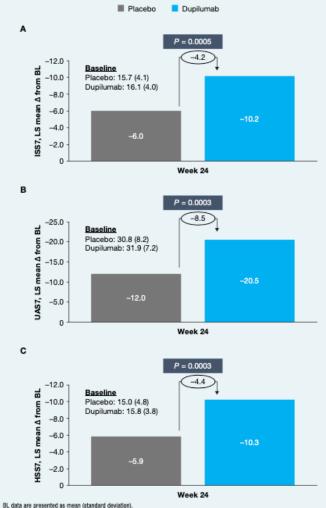
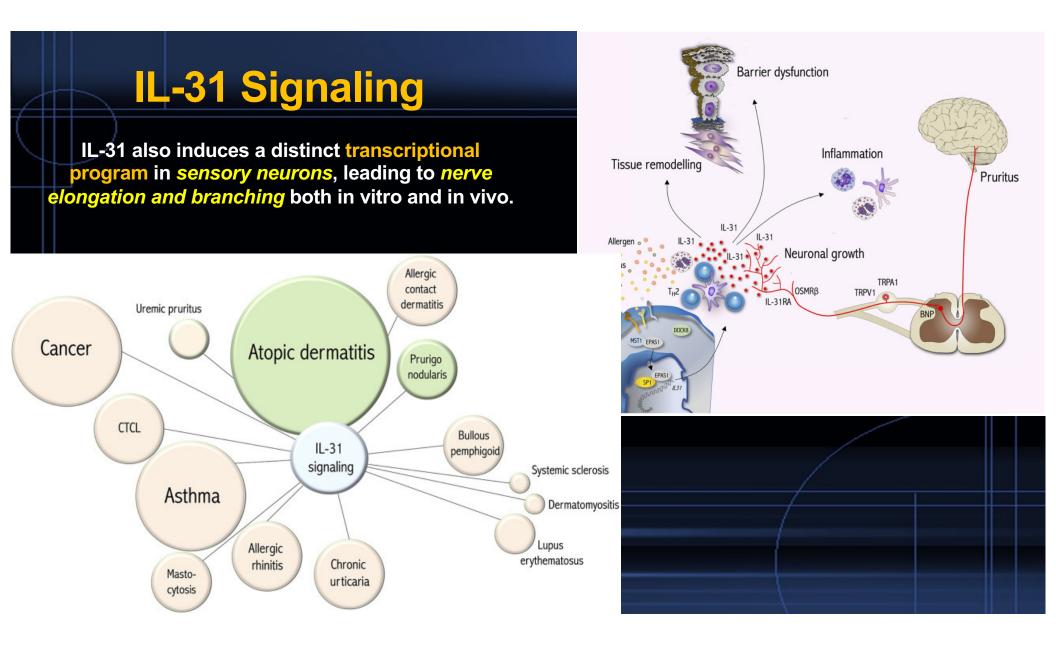
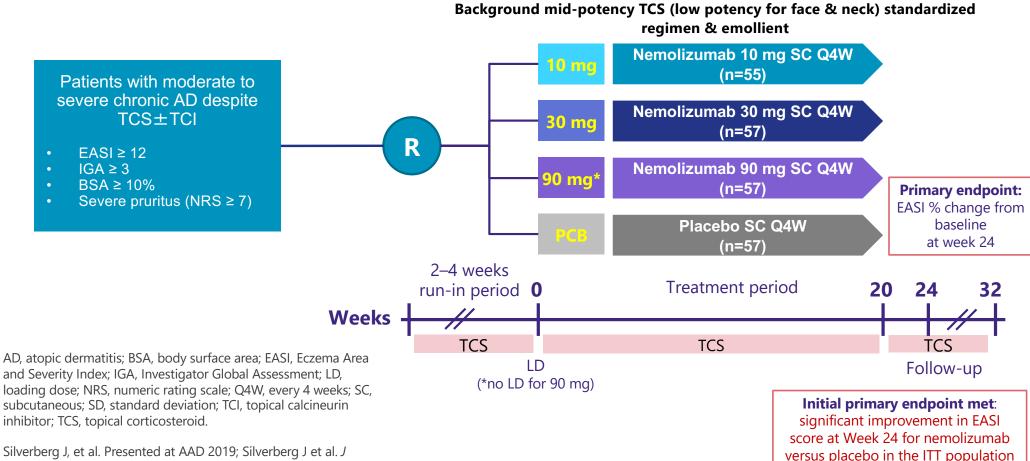




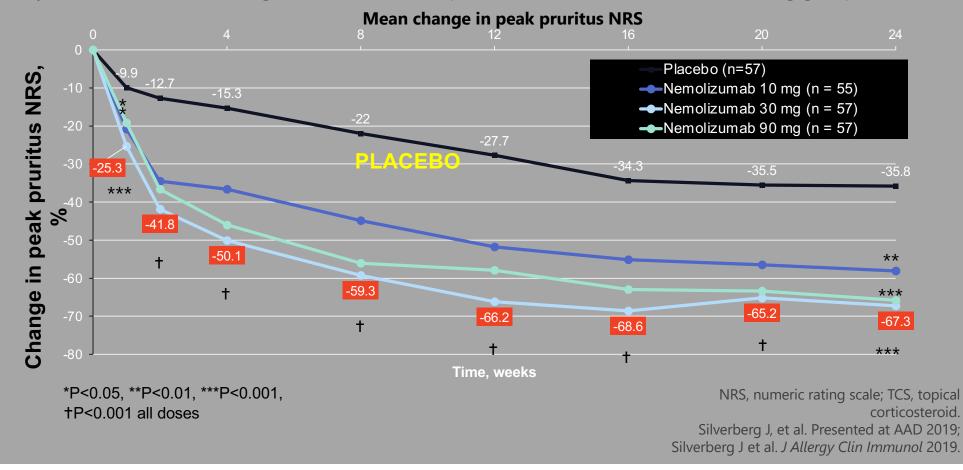
Figure 2. Dupilumab treatment leads to statistically significant improvements in (A) ISS7 (primary endpoint), (B) UAS7 (secondary endpoint), and (C) HSS7 (secondary endpoint).

ISS7, range 0-21; UAS7 is a composite of ISS7 and HSS7, range 0-42; HSS7, range 0-21. LS, least squares.

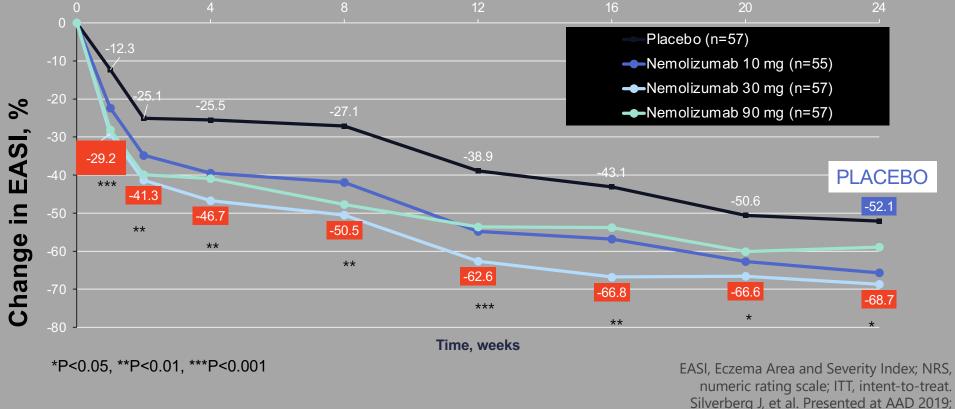

Nemolizumab: IL-31 Receptor Antibody (Coming; Not Yet Approved)

Nemolizumab: IL-31 Receptor Antibody

- Interleukin (IL)-31 affects the inflammatory response, is involved in epidermal barrier disruption in atopic dermatitis (AD) and plays a key role in pruritus.
- Nemolizumab, a humanized monoclonal antibody against *IL-31 receptor A*

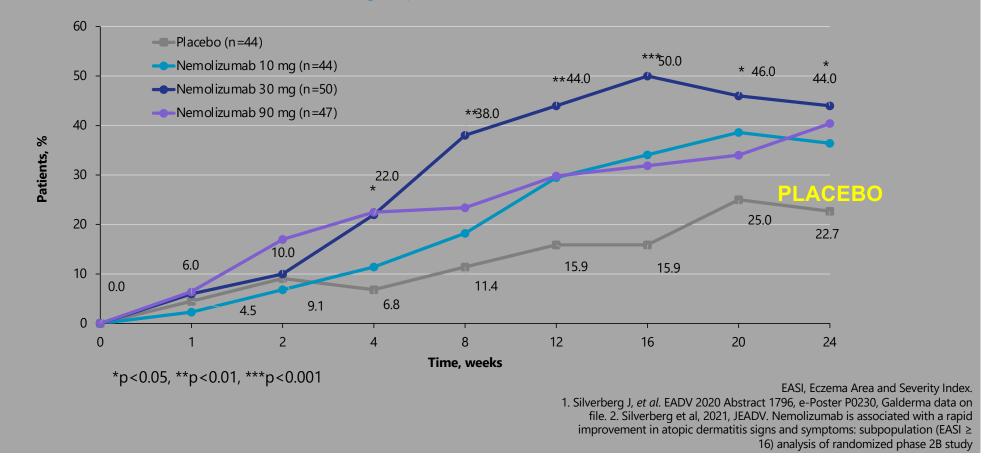

Phase 2b Study Design for Nemolizumab in AD

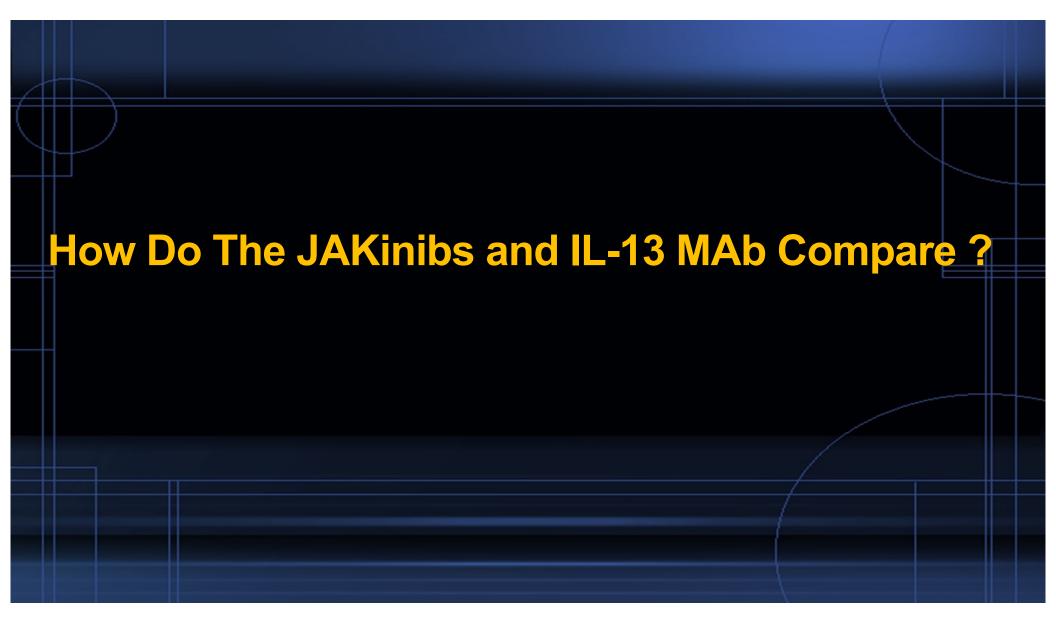
Silverberg J, et al. Presented at AAD 2019; Silverberg J et al. J Allergy Clin Immunol 2019.


Phase 2b efficacy: nemolizumab + TCS on pruritus

• Improvements in adjusted mean percent change from baseline in NRS-itch score were significant by week 1 and remained significant at all subsequent visits for the nemolizumab 30 mg group.

Phase 2b efficacy: *Nemolizumab* + *TCS* [ASI (% change from baseline)


• Improvements in EASI score (% change from baseline) were significant by week 1 and remained significant at all subsequent visits for the nemolizumab 30 mg group.



Silverberg J et al. J Allergy Clin Immunol 2019.

EASI≥16 sub-population: efficacy of nemolizumab + TCS on EASI 75

A significantly greater proportion of patients showed a \geq 75% improvement in EASI score with nemolizumab 30 mg vs placebo from Week 4 onwards ^{1,2}

Meta-analysis of EASI 75 & 90

	Upadacitinib	30 mg						
	Abrocitinib 2							
	Upadacitinib							
EASI-75	Dupilumab 30							
	Baricitinib 4							
	Baricitinib 2	and the second						
	Tralokinuma							
	Placebo			_				
	Upadacitinib	30 mg						
	Abrocitinib 2	200 mg						
	Upadacitinib							
	Dupilumab 30	00 mg						
EASI-90	Abrocitinib 1							
	Baricitinib 4							
	Tralokinuma							
	Baricitinib 2	mg						
	Placebo							
	001	10%	202	20%	400/	50%	600/	70%
	0%	10%	20%	30%	40%	50%	60%	70%

Silverberg J.I. et al Comparative Efficacy of Targeted Systemic Therapies for Moderate to Severe Atopic Dermatitis without Topical Corticosteroids: Systematic Review and Network Meta-analysisDermatol Ther (Heidelb) (2022) 12:1181–1196 https://doi.org/10.1007/s13555-022-00721-1

Meta-analysis IGA & Pruritus Scores: △NRS ≥4

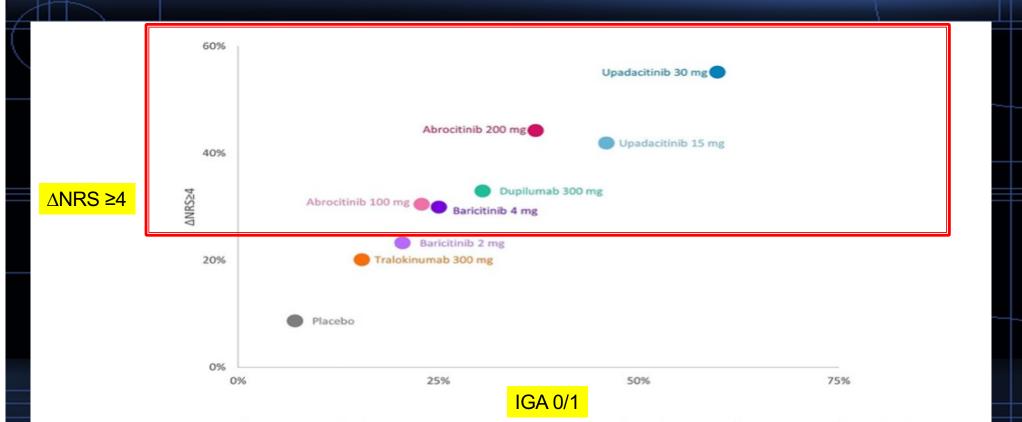


Fig. 2 IGA 0/1 versus $\Delta NRS \ge 4$ absolute response rate estimates for moderate to severe atopic dermatitis (primary endpoint timepoint). $\Delta NRS \ge 4$ Pruritus Numerical

Rating Scale reduction of ≥ 4 points from baseline, *IGA* Investigator Global Assessment for Atopic Dermatitis

Silverberg J.I. et al Comparative Efficacy of Targeted Systemic Therapies for Moderate to Severe Atopic Dermatitis without Topical Corticosteroids: Systematic Review and Network Meta-analysisDermatol Ther (Heidelb) (2022) 12:1181–1196 https://doi.org/10.1007/s13555-022-00721-1

Vitiligo

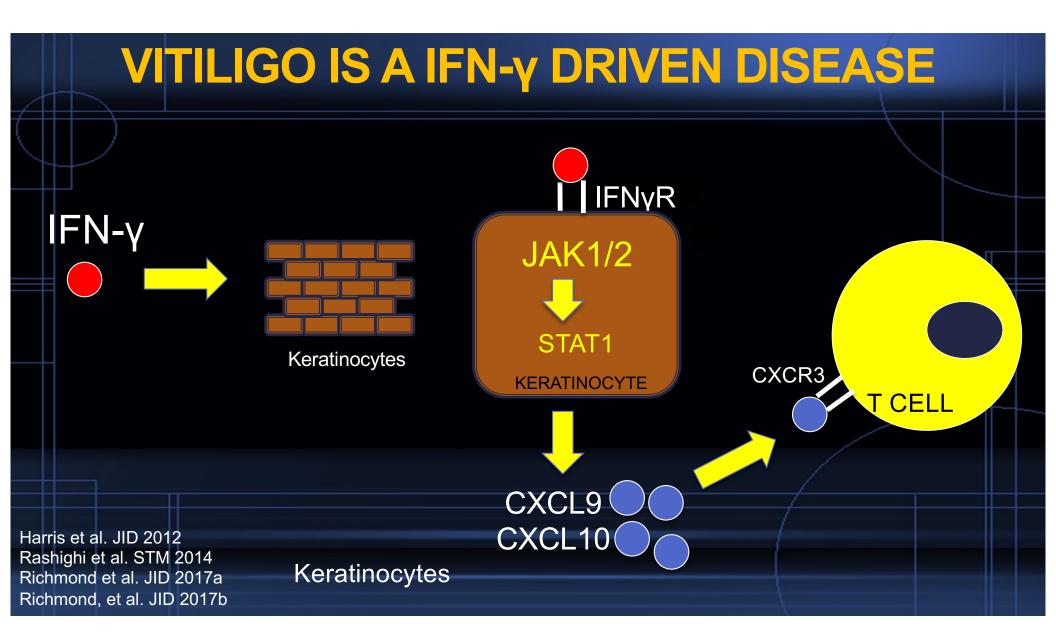
- Affects 0.5% 1% of the population
- Only ~25% of identical twins have concordant vitiligo
- 25% 30% of patients have an associated autoimmune dz (thyroid, adrenal (Addison's), alopecia areata, pernicious anemia)



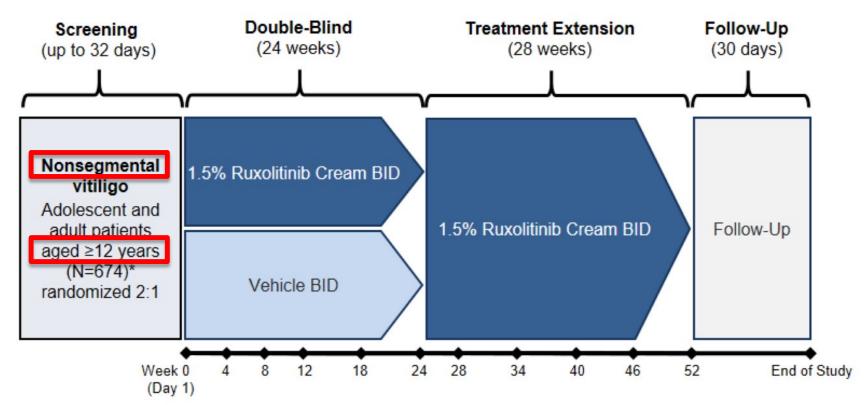
Photo of Winnie Harlow

FDA Approval July 18,2022 Ruxolitinib (JAK 1,2) Topical Cream For The Treatment of (non-segmental) Vitiligo >12 years of age

INSURANCE IS LOOKING FOR REASONS TO DENY COVERAGE. HERE ARE TWO FACTORS THEY LOOK FOR VERY INTENTLY!



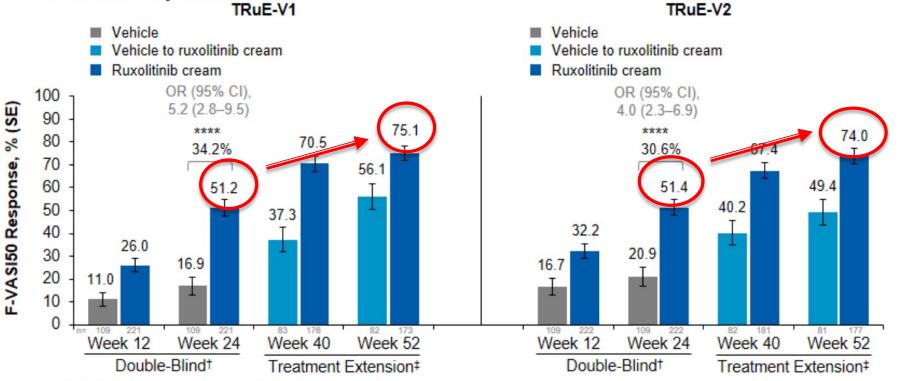
Presented at the American Academy of Dermatology Annual Meeting March 25–29, 2022; Boston, MA


Efficacy and Safety of Ruxolitinib Cream Monotherapy for the Treatment of Vitiligo: Results From Two 52-Week Phase 3 Studies

David Rosmarin, MD,¹ Thierry Passeron, MD, PhD,^{2,3} Amit G. Pandya, MD,^{4,5} Pearl Grimes, MD,⁶ John E. Harris, MD, PhD,⁷ Seemal R. Desai, MD,^{5,8} Mark Lebwohl, MD,⁹ Mireille Ruer-Mulard, MD,¹⁰ Julien Seneschal, MD, PhD,¹¹ Albert Wolkerstorfer, MD, PhD,¹² Deanna Kornacki, PhD,¹³ Kang Sun, PhD,¹³ Kathleen Butler, MD,¹³ Khaled Ezzedine, MD, PhD¹⁴

¹Tufts Medical Center, Boston, MA, USA; ²Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France; ³INSERM U1065, C3M, Université Côte d'Azur, Nice, France; ⁴Palo Alto Foundation Medical Group, Sunnyvale, CA, USA; ⁵University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁶The Vitiligo & Pigmentation Institute of Southern California, Los Angeles, CA, USA; ⁷University of Massachusetts Medical School, Worcester, MA, USA; ⁸Innovative Dermatology, Plano, TX, USA; ⁹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹⁰Office of Mireille Ruer-Mulard, MD, Martiques, France; ¹¹Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Université de Bordeaux, INSERM, BMGIC, U1035, F-33000, Bordeaux, France; ¹²Amsterdam University Medical Center, Amsterdam, Netherlands; ¹³Incyte Corporation, Wilmington, DE, USA; ¹⁴Henri Mondor University Hospital and Université Paris-Est Créteil Val de Marne, Paris, France

TRuE-V1 and TRuE-V2 Study Design

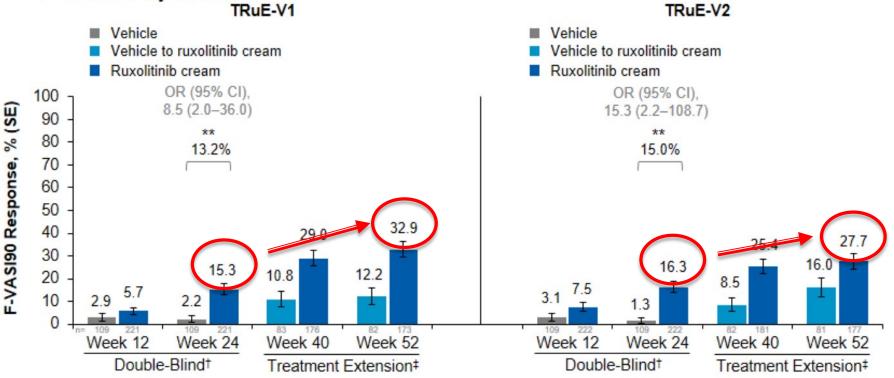


BID, twice daily.

* 1 randomized patient who did not apply ≥1 dose of ruxolitinib cream was excluded from safety analyses. 13 patients from 1 study site were excluded from efficacy analyses for compliance issues.

F-VASI50 Responses

 Approximately 75% of patients who applied ruxolitinib cream from Day 1 achieved F-VASI50 by Week 52



**** P<0.0001 for response rate difference for ruxolitinib cream vs vehicle.

[†] During the double-blind period (up to Week 24), multiple imputation was applied to account for missing values. [‡] During the open-label extension (after Week 24), responses were reported as observed.

F-VASI90 Responses

 Approximately 30% of patients who applied ruxolitinib cream from Day 1 achieved F-VASI90 by Week 52

** P<0.01 for response rate difference for ruxolitinib cream vs vehicle.

[†] During the double-blind period (up to Week 24), multiple imputation was applied to account for missing values. [‡] During the open-label extension (after Week 24), responses were reported as observed.

Clinical Images Showing F-VASI Response

1.5% Ruxolitinib Cream BID

Clinical Images Showing T-VASI Response

1.5% Ruxolitinib Cream BID

Autologous Cell Harvesting For Vitiligo Refractory To Topical, Systemic and Narrow Band UV Therapy

RECELL[®] Autologous Cell Harvesting Device

Platform for Regenerative & Restorative Skin Therapies

Pigmented skin cells applied back to patient

> Skin processed using the RECELL[®] System

Small patch of pigmented skin removed from patient (1 cm² treats 20 cm²)

Preparation of healthy cells in office within 30 minutes without specialized equipment

Technology platform benefits a wide array of skin defects and wounds irrespective of etiology

- Burns (US approved 2018)
- Stable vitiligo
- Cancer reconstruction
- Regenerative dermatology
- Soft tissue reconstruction
- Chronic wounds

RECELL for vitiligo, cancer reconstruction, regenerative dermatology, soft tissue reconstruction, and chronic wounds is investigational and limited by US Federal Law to investigational use

Cell Harvesting Procedure

1 Obtain Skin Sample

Local anesthetic application followed by thin skin sample harvest using a tool familiar to the dermatologist

2 Prepare Suspension

Skin sample subjected to enzymatic and mechanically processing using RECELL System.

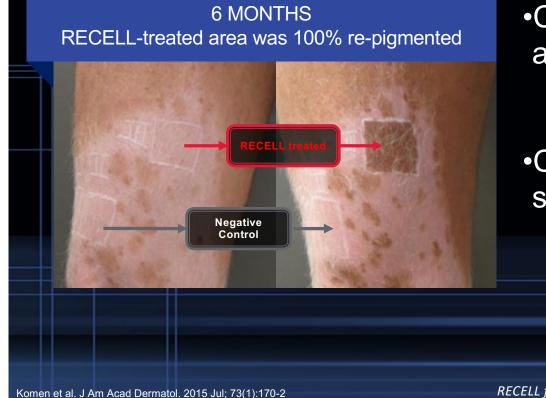
Ablate & Apply Treatment area is prepared w

Treatment area is **prepared with epidermal ablation**, and then apply Spray-on Skin[™] cell suspension.

3

4 Dress & Aftercare

After RECELL apply non-adherent, greasy gauze and protective dressings. Cells should be protected from moisture for 5-7 days.


Images courtesy of Dr Mahmoud, Dr Hamzavi, Dr Munavalli, and Dr Robinson

RECELL for vitiligo is investigational and limited by US Federal Law to investigational use

Case Series:

Repigmentation of Stable Vitiligo and Piebaldism

10 patients included in study, with median repigmentation of 78%

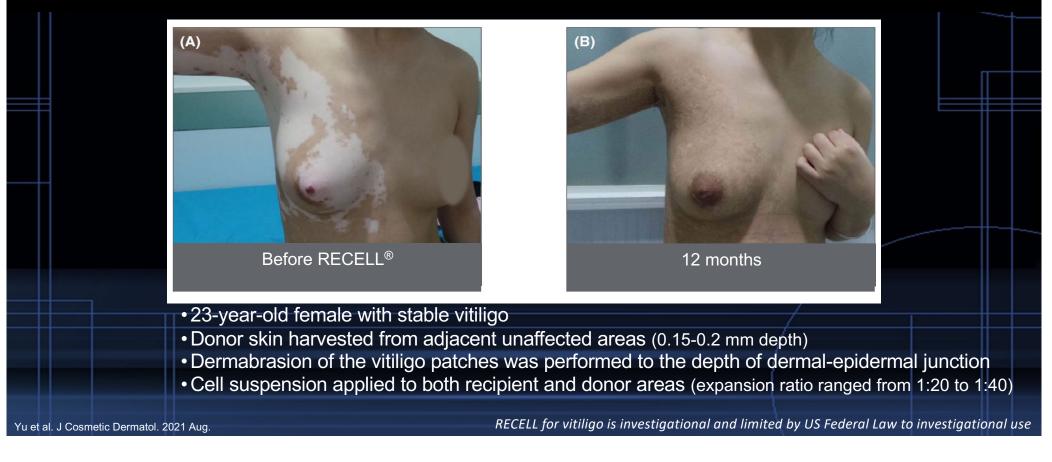
CO2 ablation to prepare treatment area
Ultrapulse active Fx 200 mJ, 60W, Density 3
Cells prepared from thin skin sample (0.2-0.3 mm)

RECELL for vitiligo is investigational and limited by US Federal Law to investigational use

RECELL Case: **Repigmentation of Shin**

6 months

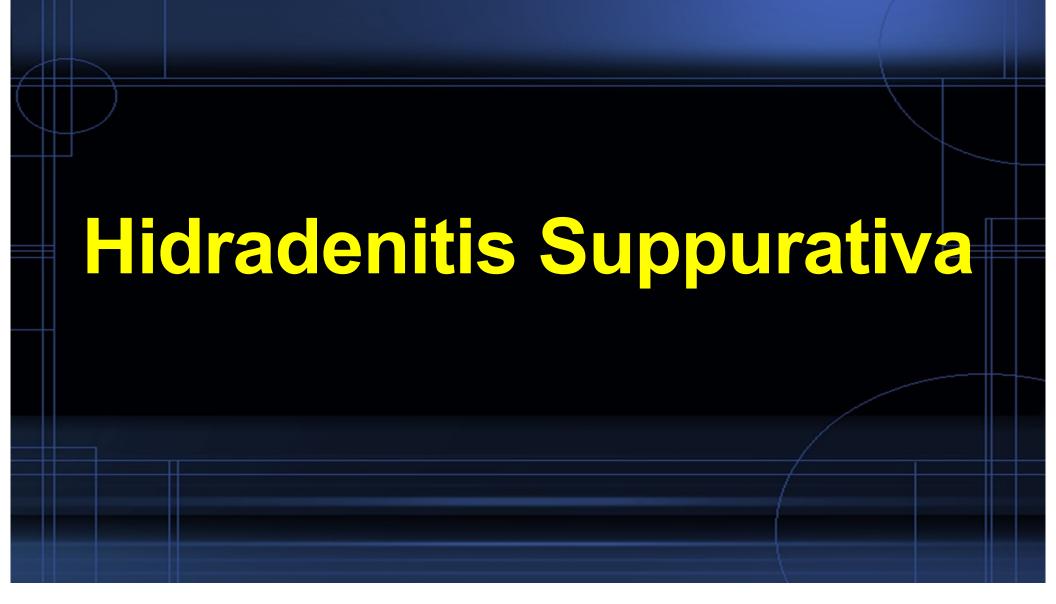
- 33-year-old female with stable vitiligo (>5 yrs)
- Patient unresponsive to creams, UVA, UVB, and punch grafting
- CO2 laser (200 mJ, 60 W, density 3) to the depth of dermal-epidermal junction
- Single application of cell suspension


Komen et al. JCAS. 2016; 9(2): 133-5.

RECELL for vitiligo is investigational and limited by US Federal Law to investigational use

Case Series:

Repigmentation of Nipple-Areola Complex


18 patients included in study, 12-month repigmentation rate in nipple-areola complex was 93.2 ± 3.6%

Phase 3 Results: 6 Month Data

- An expert central review committee found:
- 56% of patients treated with RECELL had repigmentation of more than 50% of the treated area
- 12% of the control treatments.

Press release 15 Sept 2022

Secukinumab in Moderate to Severe Hidradenitis Suppurativa: SUNSHINE and SUNRISE Phase 3 Trials

Secukinumab in Moderate to Severe Hidradenitis Suppurativa: Primary Endpoint Analysis From the SUNSHINE and SUNRISE Phase 3 Trials

Alexa B. Kimball, 1 Afsaneh Alavi, 2 Gregor B.E. Jemec, 3 Alice Gottlieb, 4 Xlaoling Wei, 5 Magdalena B. Wozniak, 4 Lorenz Uhlmann, 7 Angela Llobet Martinez, 7 Deborah Keefe, 8 Ruvie Martin, 8 Li Chen, 4 Elisa Muscianisi ester, MN, USA; "Department of I logy and Applied Research in Skin (CLEARS), Department of Dermstology, Beth Israel Descorves Ned of Singl New York NY, USA: Newsris Pharma Sharedail, China: Newsris Instant Linked, Duble, Inc.

BACKGROUND

- Hidradenitis supportive (HS) is a chronic autoinflammatory keratinization disease of the skin invo the hair follicle characterized by nock/ex, abscesses and draining turnels'
- HS is characterized by high patient burden and a recognized need for novel therapeutic options? The IL-17 pathway has been implicated as a key orchestrator of inflammation in HS¹

- The L-117 pathway has been implicated as a key orchestrator of inflammation in HS¹. The SUMSHME and SUMRISE suchais investigated the efficacy and solvery of secularismate, an am14-174 agent, in the treatment of moderate to servers HS The aim of the pather is to describe the phraner endpoint randpate (Week 16) results from SUNSHINE (NCTEO373016) and SUNREE (NCTEO373032), two double-time, identical, Phrase 3 randomised controlled trails of secularized to secularize to server HS.

METHODS

Study Design

- SUNSHINE and SUNRISE were two rand mixed, double-blind, multice (16 weeks) and long-term (up to 1 year) efficacy, safety, and tolerability of two suboutaneous (s.c.) SEC does regimens in adult patients with moderate to severe HS
- Atotal of 1564 patients (mean ago 36.2, 56.3% female) across 219 sites worktwide were rando SUNSHINE (n=541) and SUNRUSE (n=543)

ation 4500 s.c 1 PBO s.c 44448 SEC induction phone 165. Issuance EXTINCUT: enclotivestment partial VII. PR. and of the OVEX events for a particular, adjustments, VII.C. and Alternatic VII.C. and Alternativestical view.

Endpoints/assessments

- Primary endpoint (week 16): To demonstrate superiority of secukinumab versus placebo bas HSCR (selfned as at least a 50% decrease in AN count with no increase in the number of abs and/or in the number of disining fiscular relative to baseline).
- econdary andpoints (Week 16): Percentage change in AN count from baseline, tares, and drive-errort of NRS93 onrong patients with a baseline skin pain NRS 38 (defined as of least a 39 deattion and at least a 2-unit reduction in baseline patient's global assessment of skin pain at wo et a 38%
- Exploratory objectives: To evaluate long-term safety, efficacy, and tolerability of secultinumab and its effect on patient reported outcomes (PROs) and biomarkers.

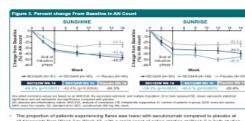
RESULTS

- nographics and baseline characteristics
- N=541 (SUNSHINE) and N=543 (SUNRISE) randomized; 509 (94,1%) and 506 (93,2%) patients completed Treatment Period 1 (Week 15), respectively
- uation rate of treatment up to Week 16 was very low and balanced despite COVID-19 pandemic Table 1)
- 59% of participants were categorized as Hurley stage II and 37% as Hurley stage III (Table 2) bout one quarter of participants had received previous systemic biologic therapy (mostly anti-

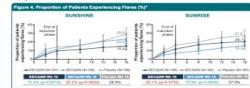
Efficacy: Primary endpoints

The primary endpoint was met in both the SUNSHINE and SUNRISE studies

ireater response rates for secukinumab compared to placebo were seen at all time-points from Week 2 Week 16, with a rapid onset of action by Week 2 (Figure 2)



10.999.00 SECONWING 18 BECODEW MIN 18 25 10 05 18 Files AND VIC. 18 254


Efficacy: Secondary endpoints duced the ab

In both studies, secukinumab reducer moderate to severe HS (Figure 3)

A decrease in AN count with secukinumab app Week 15 in both studies


16, with a rapid onset of action starting at Week 2 in Figure 4)

NRS30 was defined as 200% reduction and a 22-unit reduction from baseline in Patient's Global Assessment of Skin Pain. Only patients with a baseline NRS23 were included in the analysis of skin pair

Pooled CRP levels demonstrate numerical reductions from placebo group A larger treatment effect was achieved with seculinumab compared with the placeto regimen as early an

Week 4 and sustained up to Week 15

Safety

Secultinus (Table 3)

		SCHOOL SECTION.	SCARCINI,			
Outcome, n (%)	SECQIW N=181	BECONV N=180	Planeter N=100	SECQ2N H=100	SECONV N=180	Planetes Merillis
Safety overview						
Any AEs	122 (57.4)	118-(65.6)	129 (96.7)	115 (52.6)	714 (60.5)	116 (63.4)
All non-Fatal SADs	3(1.7)	3-(1.7)	6 (5.3)	6 (5.3)	6.615.00	5-(2.7)
Dwatter	(8.0) 0	0.00.00	0 (0.0)	0 (0.0)	0 (0.0)	0.000
Discordinant study treatment due to Alia	5 (2.0)	1(0.4)	1 (0.4)	1 (0.4)	4 (2.2)	4 (8.2)
AEs of special interest						
Infections and infectations (SOC)	89 (52.6)	51 (26.3)	53 (29.4)	82 (28.9)	59 (52.6)	42 (55.8)
1817 (HLT)	33 [18.2]	28 (16.4)	22(12.2)	27 (15.0)	21 (11.7)	20 (15.0)
Fungal infectious clearaters (HLGIT)	12 (8.4)	1 (0.4)	7 (2.8)	7 (2.8)	11(7.2)	3 (1.4)
Candida Hilbertane (ML7)	211.0	1.00.00	4(2.2)	612.00	542.00	241.10
Hypersonalivity (SMQ, narrow)	12 (5.0)	9.8.00	96.0	T (5.0)	542.00	7.(5.8)
Matignant or unspecified tamaurs" (BMQ)	0 (0.0)	0-(0-0)	1 (0.4)	0 (0.0)	1 (0.4)	1 (0.5)
MAGE	(0.0)	0 (0 0)	0 (0.0)	01030	0 (0.0)	6 (0.0)
80'	0.000	0.00.00	0.0.0	110.0	1 (0.8)	0.0035

CONCLUSIONS

- The SUNSHINE and SUNRISE Phase 3 trials both mot their primary endpoint (HSCR) demons superiority of secultinumab over placebo with repid symptom relief in patients with moderate to servero HS
- Seculinumab achieved the majority of its secondary endpoints of AN count, flares and pain while demonstrating positive numeric trends in safety and efficacy in DLGI and CRP
- Secultinumab was well tolerated in patients with moderate to severe HS, consistent with the know tavorable safety profile in other approved indications

REFERENCES

- Free J. 2642 At 2020,17382 Ingram.JR, et al. Eur Acad Dec
 - tentile CIC at al Fee Dermated 2024 (CORenal Total)

FINANCIAL DISCLOSURES

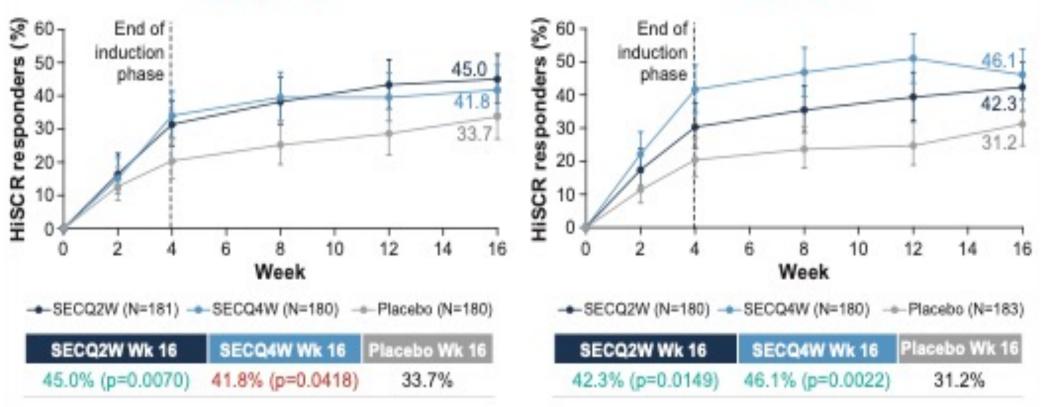
DK DH LC and DR KEYWORDS

B. HOCR. IL-17. Phase 3. Security rest

ACKNOWLEDGEMENTS

- nd medical writing support, wi with the Good Publication/Pro-

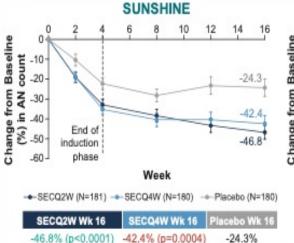
To download a copy of this pester, visit the web at

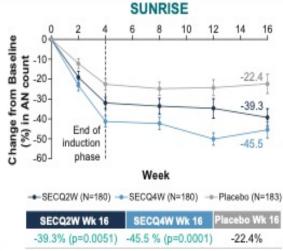

amab reduced skin pain in patients with moderate to severe HS (Figure 5)

1⁰ Efficacy Endpoints: HiSCR up to Week 16

Figure 2. Primary Efficacy Endpoint: HiSCR up to Week 16

SUNSHINE


SUNRISE



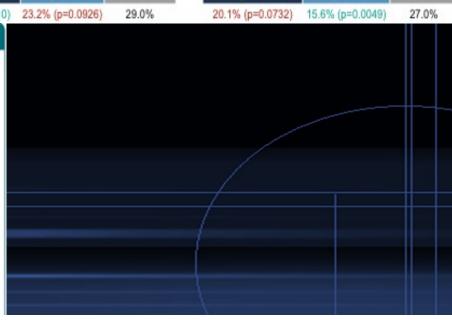

2⁰ Efficacy **Endpoints:** %Change in odules/Abscesses and Flares

Figure 4. Proportion of Patients Experiencing Flares (%)* SUNSHINE SUNRISE Proportion of patients experiencing flares (%) 40 experiencing flares (%) 40 Proportion of patients End of End of induction induction 30 29.0 30 phase phase 23.2 20 20-15.4 10 10 0 14 16 10 12 0 -- SECQ2W (N=181) -- SECQ4W (N=180) -- SECQ2W (N=180) -- SECQ4W (N=180) ----Placebo (N=180) SECQ2W Wk 16 Placebo Wk 16 SECQ2W Wk 16 SECQ4W Wk 16 SECQ4W Wk 16 15.4% (p=0.0010) 23.2% (p=0.0926) 29.0% 20.1% (p=0.0732) 10 12 14 16

Figure 3. Percent change From Baseline in AN Count

27.0

20.1

15.6

14 16

----Placebo (N=183) lacebo Wk 16

12

10

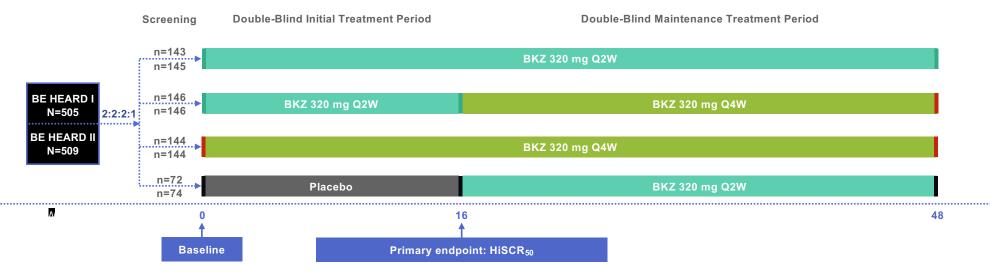
Bimekizumab in patients with moderate-to-severe hidradenitis suppurativa: 48-week efficacy and safety from BE HEARD I & II, two phase 3, randomized, double-blind, placebo-controlled, multicenter studies

<u>Alexa B. Kimball</u>,¹ Christos C. Zouboulis,^{2,3} Christopher Sayed,^{2,4} Joslyn S. Kirby,⁵ Errol Prens,^{2,6} John R. Ingram,^{2,7} Amit Garg,⁸ Robert Rolleri,⁹ Edward Muller,¹⁰ Paulatsya Joshi,¹⁰ Gregor Jemec^{2,11,12}

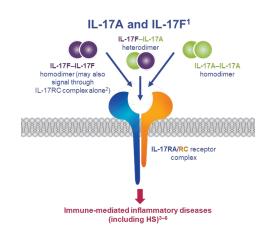
¹Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; ²European Hidradenitis Suppurativa Foundation (EHSF), Dessau, Germany; ³Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany; ⁴Department of Dermatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; ⁵Department of Dermatology, Penn State University, Hershey, PA, USA; ⁶Department of Dermatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands; ⁷Department of Dermatology & Academic Wound Healing, Division of Infection & Immunity, Cardiff University, Cardiff, UK; ⁸Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; ⁹UCB Pharma, Morrisville, NC, USA; ¹⁰UCB Pharma, Slough, UK; ¹¹Department of Dermatology, Zealand University Hospital, Roskilde, Denmark; ¹²Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark.

AAD Late-Breaking Research Program | March 17–21 2023

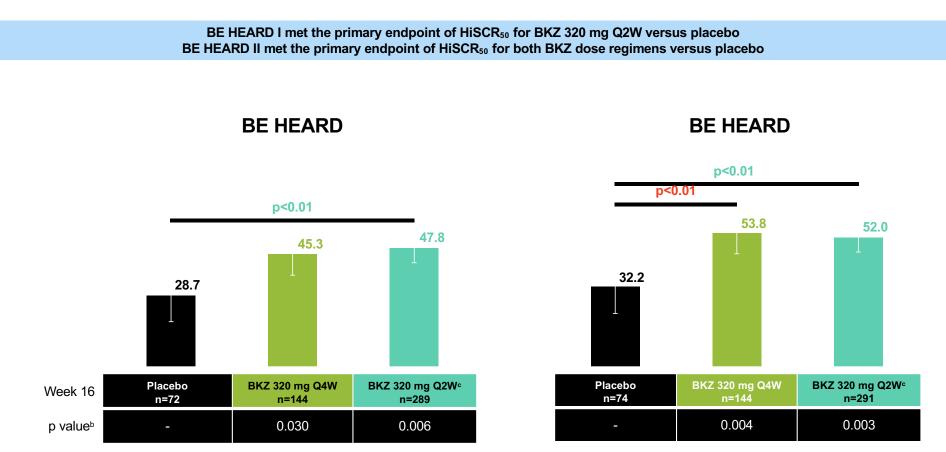
Session S042


This slide deck is for medical use to reply to unsolicited requests only. Slides are identical to those presented at AAD 2023. Bimekizumab is not approved by any authority worldwide for the use in HS

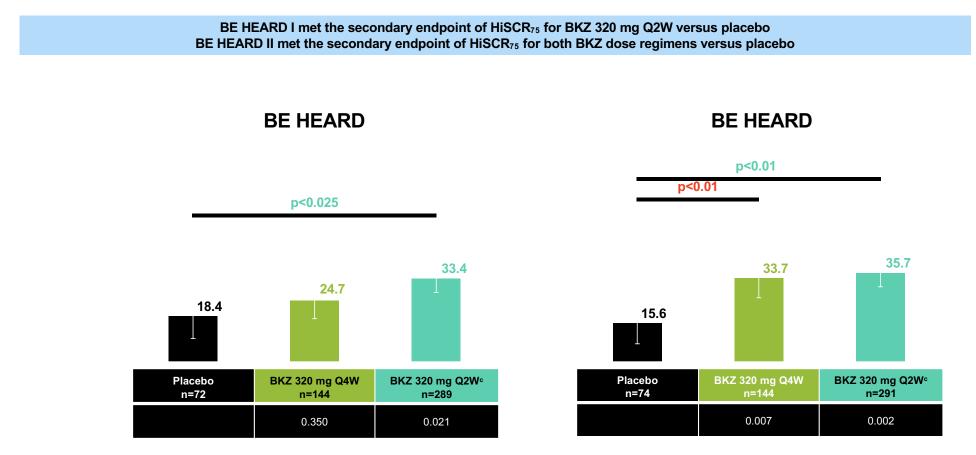
Background and BE HEARD I and II Study Design


Patients

- **Included**: patients with a diagnosis of moderate-to-severe HS with ≥5 inflammatory lesions (abscess and inflammatory nodule [AN] count)
- Excluded: patients with >20 draining tunnels



1. Yang XO et al. J Exp Med 2008;205:1063–75; 2. Goepfert A et al. Immunity 2020;52:499–512; 3. Glatt S et al. Ann Rheum Dis 2018;77:523–32; 4. Zouboulis CC et al. J Eur Acad Dermatol Venereol 2020;34:846–61; 5. Schlapbach C et al. J Am Acad Dermatol 2011;65:790–98; 6. Maroof A et al. Translational data suggesting a pivotal role for IL-17A and IL-17F in hidradenitis suppurativa. Poster 3776; SHSA 2022. AN: abscess and inflammatory nodule; BKZ: bimekizumab; HiSCR₅₀: ≥50% reduction from baseline in the total AN count with no increase from baseline in abscess or draining tunnel count; HS: hidradenitis suppurativa; IL: interleukin; Q2W: every two weeks; Q4W: every four weeks; RA: receptor A; RC: receptor C.


Primary Endpoint: HiSCR₅₀ Response at Week 16 (mNRI [All-ABX]^a)

Randomized set. [a] mNRI (All-ABX): Patients who take any systemic antibiotic (new or increased dose) or who discontinue due to AE or lack of efficacy are treated as non-responders at all subsequent visits. Other missing data were imputed via multiple imputation. Primary analysis method; [b] p value (from Wald test) reported for adjusted responder rates, obtained from logistic regression with treatment, Hurley

Q2W: every two weeks; Q4W: every four weeks

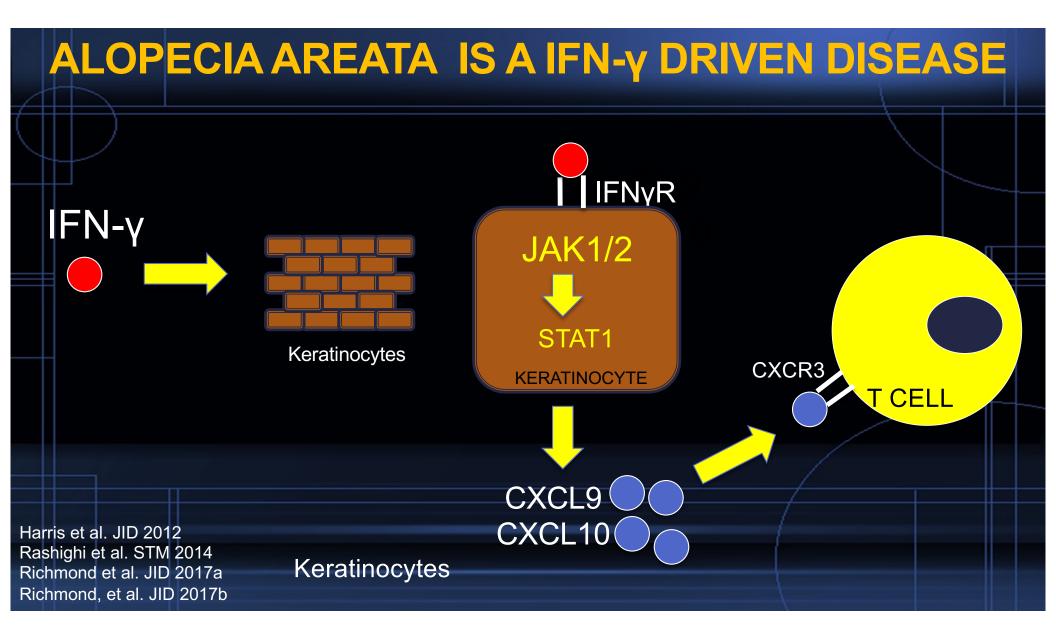
Secondary Endpoint: HiSCR₇₅ Response at Week 16 (mNRI [All-ABX]^a)

Randomized set. [a] mNRI (All-ABX): Patients who take any systemic antibiotic (new or increased dose) or who discontinue due to AE or lack of efficacy are treated as non-responders at all subsequent visits. Other missing data were imputed via multiple imputation. Primary analysis method; [b] p value (from Wald test) reported for adjusted responder rates, obtained from logistic regression with treatment, Hurley stage at

Q2W: every two weeks; Q4W: every four weeks

Safety Topics of Interest: Weeks 0–48

_		BE HE	ARD I		BE HEARD II				
	Placebo/BKZ 320 mg Q2W ^a (n=65) 100 PY=0.59	BKZ 320 mg Q4W/Q4W (n=143) 100 PY=1.18	BKZ 320 mg Q2W/Q4W (n=145) 100 PY=1.24	BKZ 320 mg Q2W/Q2W (n=141) 100 PY=1.21	Placebo/BKZ 320 mg Q2Wa (n=69) 100 PY=0.68	BKZ 320 mg Q4W/Q4W (n=142) 100 PY=1.31	BKZ 320 mg Q2W/Q4W (n=146) 100 PY=1.35	BKZ 320 mg Q2W/Q2W (n=144) 100 PY=1.33	
Infections and infestations	43 (66.2)	87 (60.8)	89 (61.4)	91 (64.5)	34 (49.3)	76 (53.5)	85 (58.2)	85 (59.0)	
Serious infections	1 (1.5)	2 (1.4)	3 (2.1)	5 (3.5)	1 (1.4)	1 (0.7)	1 (0.7)	2 (1.4)	
Opportunistic infections ^c	1 (1.5)	3 (2.1)	3 (2.1)	1 (0.7)	0	3 (1.4)	1 (0.7)	1 (0.7)	
Fungal infections	12 (18.5)	35 (24.5)	32 (22.1)	33 (23.4)	10 (14.5)	35 (24.6)	39 (26.7)	40 (27.8)	
Candida infections	4 (6.2)	22 (15.4)	21 (14.5)	20 (14.2)	4 (5.8)	26 (18.3)	29 (19.9)	27 (18.8)	
Oral candidiasis	3 (4.6)	13 (9.1)	16 (11.0)	15 (10.6)	3 (4.3)	14 (9.9)	25 (17.1)	22 (15.3)	
Neutropenia	0	0	1 (0.7)	0	0	0	0	0	
Any hypersensitivity reaction ^d	15 (23.1)	26 (18.2)	30 (20.7)	38 (27.0)	10 (14.5)	23 (16.2)	28 (19.2)	23 (16.0)	
Dermatitis and eczema	8 (12.3)	15 (10.5)	20 (13.8)	22 (15.6)	9 (13.0)	17 (12.0)	20 (13.7)	14 (9.7)	
Adjudicated suicidal ideation/behavior	1 (1.5)	2 (1.4)	0	1 (0.7)	0	0	1 (0.7)	0	
Adjudicated MACE	0	0	1 (0.7)	2 (1.4)	0	0	0	0	
Hepatic events	7 (10.8)	2 (1.4)	7 (4.8)	12 (8.5)	2 (2.9)	7 (4.9)	7 (4.8)	3 (2.1)	
>5 x ULN elevation of AST/ALT	0	0 ^e	2 (1.4) ^f	2 (1.4) ^e	1 (1.4)	2 (1.4)	Oa	1 (0.7) ^h	
Malignancies	1 (1.5)	0	0	0	0	1 (0.7)	0	2 (1.4)	
Definite or probable adjudicated IBD ⁱ	1 (1.5)	1 (0.7)	1 (0.7)	0	0	2 (1.4)	1 (0.7)	1 (0.7)	


Across the program, one patient with significant cardiovascular history died of congestive heart failure (BE HEARD I: BKZ Q2W/Q2W group).

Active medication set, MedDRA (Version 19.0). Hepatic events category includes events in the SMQ "Drug related hepatic disorders - comprehensive search (SMQ)", excluding the following two sub-SMQs: "Liver neoplasms, benign (incl. cysts and polyps) (SMQ)" and "Liver neoplasms, malignant and unspecified (SMQ)"; Hepatic events category includes all post-baseline assessments including those at unscheduled visits but excluding any that occur more than 140 days after the last administration of study medication, counting a patient only once. [a] TEAEs reported for the Placebo/BKZ 320 mg group may have occurred while the patient was receiving either placebo or BKZ; [b] [c]

Opportunistic infections were localized mucocutaneous events, as defined by internal company conventions; [d] There were no incidences of anaphylactic reactions related to BKZ; [e] n=144; [g] n=144; [g] n=143; [h] n=143;

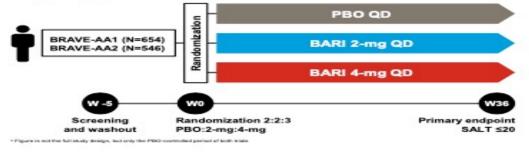
On June 13th, 2022, the US FDA approved *Olumiant*® *(Baricitinib),* a Janus kinase (JAK 1,2) inhibitor, as a first-in-disease systemic treatment for adult patients with <u>severe alopecia areata</u>.

Baricitinib (JAK1,2) For Alopecia Areata

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

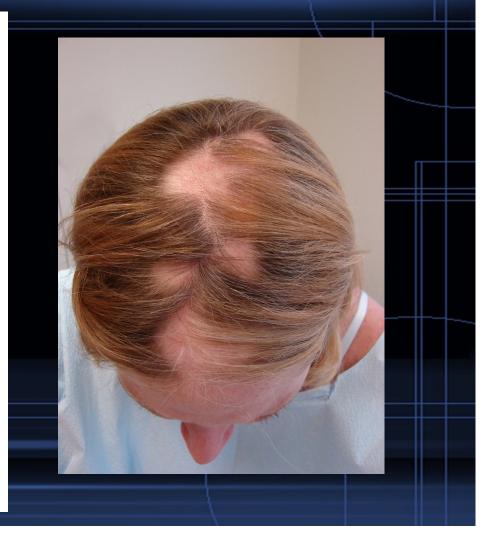
MAY 5, 2022

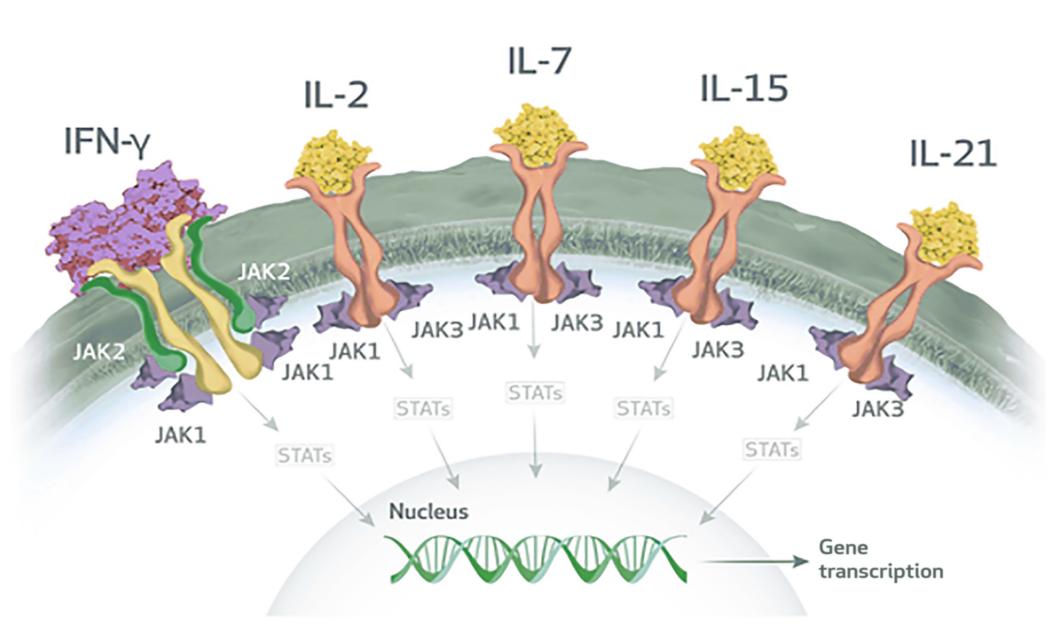

VOL. 386 NO. 18

Two Phase 3 Trials of Baricitinib for Alopecia Areata

Brett King, M.D., Ph.D., Manabu Ohyama, M.D., Ph.D., Ohsang Kwon, M.D., Ph.D., Abraham Zlotogorski, M.D., Justin Ko, M.D., Natasha A. Mesinkovska, M.D., Ph.D., Maria Hordinsky, M.D., Yves Dutronc, M.D.,
Wen-Shuo Wu, M.D., Jill McCollam, Pharm.D., Chiara Chiasserini, Sc.D., Guanglei Yu, Ph.D., Sarah Stanley, Ph.D., Katrin Holzwarth, M.D., Amy M. DeLozier, M.P.H., and Rodney Sinclair, M.D., for the BRAVE-AA Investigators*

METHODS

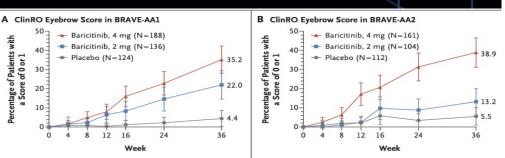

Study Design^a, BRAVE-AA1 and BRAVE-AA2



Key Eligibility Criteria

- Male or female ≥18 years old; ≤60 years for males and ≤70 years for females
- Hair loss involving ≥50% of the scalp, as measured by SALT
- Current episode of AA >6 months to <8 years^a
- No spontaneous improvement in the 6 months prior to screening

*Patients who had AA for thill pears could be enabled if episodes of regrowth (spontaneous or due to being under treatment) had been observed on the affected areas or

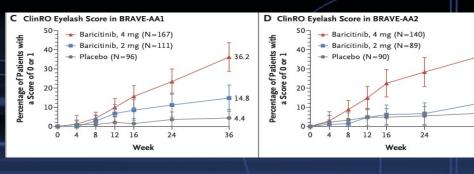


Baricitinib: Scalp, Eyebrow & Eyelash Regrowth

A BRAVE-AA1 **B** BRAVE-AA2 50-50 -➡ Baricitinib, 4 mg (N=281) ➡ Baricitinib, 4 mg (N=234) Percentage of Patients with a SALT Score of ≤20 of Patients with Score of ≤20 Baricitinib, 2 mg (N=184) --- Baricitinib, 2 mg (N=156) 40-40-38.8 Placebo (N=189) Placebo (N=156) 35.9 30-30-20 22.8 Percentage o a SALT S 20-19.4 10-6.2 3.3 0. 12 24 36 12 16 24 36 0 4 8 16 0 4 8 Week Week

SCALP: 80% SCALP COVERAGE

EYEBROW: IGA 0/1


EYELASH: IGA 0/1

36.8

12.3

6.9

36

Baricitinib: 2mg & 4 mg for Alopecia Areata

- Demographic: Average age 37.5 years with a mean duration of 12.2 years with a average onset of age 25
- Scalp:
 - 35.2% patients treated with baricitinib 4 mgs/day achieved 80% scalp coverage
 - 21.7% patients treated with baricitinib 2 mgs/day achieved 80% scalp coverage
- 2-5% of placebo group regrew hair.
- Eyebrow: 4 mgs/day: 31% regrowth Placebo: 3%
- Eyelash: 4 mgs/day 33.5% regrowth Placebo: 3%

Dosage Recommendations For Baricitinib in Alopecia Areata (PI)

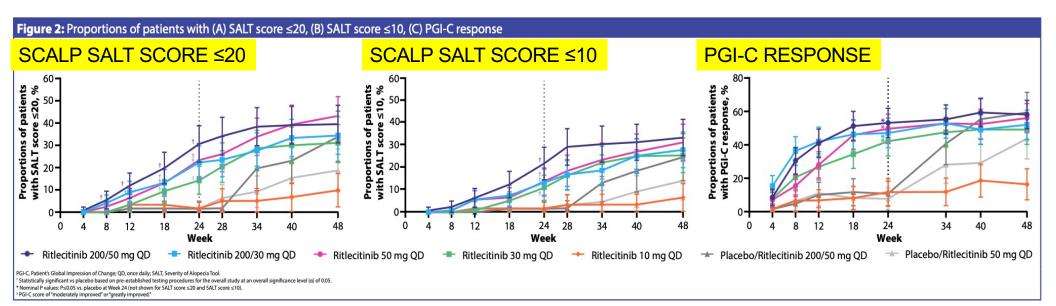
- 2 mg once daily orally, with or without food
 Inadequate response: Increase to 4 mg once daily
 Severe AA: 4 mg once daily, w/ or w/o food.
 - Nearly complete or complete scalp hair loss, with or without substantial eyelash or eyebrow hair loss
 - Once patients achieve an adequate response to treatment with 4 mg, decrease the dosage to 2 mg once daily.

Pooled Safety Data and AA and AD

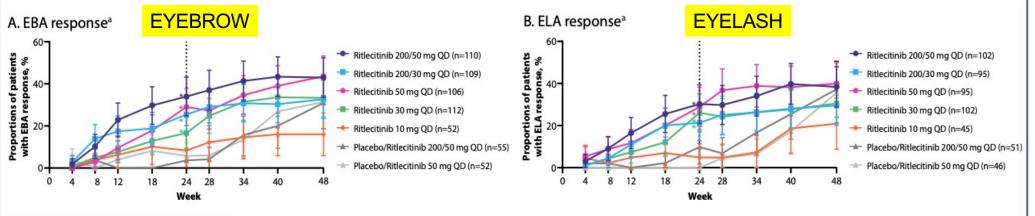
- Pooled data in 2,500 patients for AA and atopic dermatitis Acne 2.9%
- Headache 6.6%
- Diarrhea 3.1%
- Severe side effects: 10/2500

Oral Ritlecitinib (PF06651600)JAK3/TEC Inhibitor Efficacy: Phase 2b/3 Trial

Efficacy of the oral JAK3/TEC inhibitor ritlecitinib (PF-06651600) in patients with alopecia areata over 48 weeks: results from the ALLEGRO phase 2b/3 randomized, double-blind, placebo-controlled trial


Natasha Mesinkovska¹, Jerry Shapiro², Brett King³, Rodney Sinclair⁴, Xingqi Zhang⁵, Charles Lynde⁶, Walter Gubelin Harcha⁷, Jacek C Szepietowski⁸, Dalia Wajsbrot⁹, Liza Takiya⁹, Robert Wolk⁹ School of Medicine, University of California, Irvine, CA, USA: ³New York University School of Medicine, New Yake, CU, USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux Takisey, Guangzhou, China; ⁴Department of Medicine, New Yake, CU, USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Melbourne, Victoria, Australia; ³The First Affiliated Hospital of Lux School of Medicine, New York, VU USA: ³Sindair Dermatology, Victoria, Australia; ³The First Affilia

- AA is mediated by T-Cells and NK cell attack on hair follicles
- Cytokines IFN-γ and IL-15 mediated by JAK-STAT pathways
- Oral Ritlecitinib (PF06651600)JAK3/TEC Inhibitor
 - Impacts JAK-STAT (JAK3) and TEC (T-cell receptor signaling via TEC kinases)
- Efficacy: 50 mg & 30 mg doses, with 200 mg week load dose demonstrated efficacy as early as week 8 and 12 respectively
 - Safety: severe AEs 0.8 3.2%; 69-75% mild/mod AE


Figure 1. ALLEGRO Phase 2b/3 Study Design[®]

	Placebo-contr	rolled (24 weeks)									
Loading (4 weeks) Maintenance (20 weeks)					Extension (24 weeks)						
Ritlecitinib 200 mg once a day	Ritlecitinib 50 n	ng once a day	Ritleo	Ritlecitinib 50 mg once a day						\square	
Ritlecitinib 200 mg once a day	Ritlecitinib 30 n	ng once a day	Ritleo	Ritlecitinib 30 mg once a day							
Ritlecitinib 50 mg once a day	Ritlecitinib 50 n	ng once a day		Ritleo	Ritlecitinib 50 mg once a day						erm study
Ritlecitinib 30 mg once a day	Ritlecitinib 30 n	ng once a day	Ritleo	Ritlecitinib 30 mg once a day					End of study	Enrolment into long-term study	
Ritlecitinib 10 mg once a day	Ritlecitinib 10 n	ng once a day		Ritleo	Ritlecitinib 10 mg once a day						Enrolmen
Placebo	Placebo			Ritlecitinib 200 mg once a day for 4 weeks then 50 mg once a day							
Placebo	Placebo			Ritleo	itinib 50 mg	once a day					
1 15 2	29 57	85	127	169 Day	183	197	239	281	337	365	
aseline 2	4 8	12	18 Sto	24* udy week	26	28	34	40	48	Follow	-up

King et al 2023

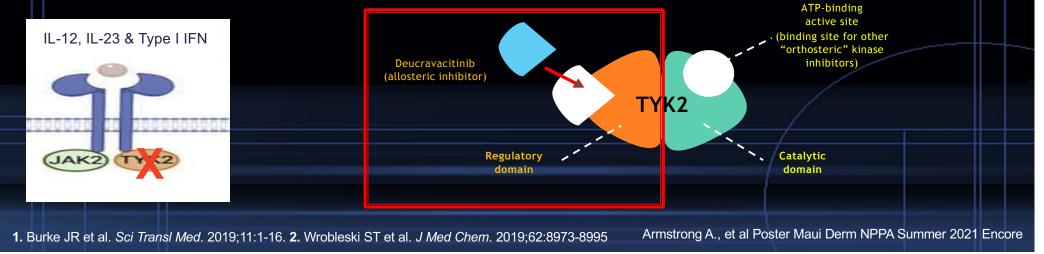
Figure 3: Proportions of patients with (A) eyebrow assessment (EBA) or (B) eyelash assessment (ELA) response

EBA, eyebrow assessment; ELA, eyelash assessment; QD, once daily.

* Nominal P values: P≤0.05 vs. placebo at Week 24.

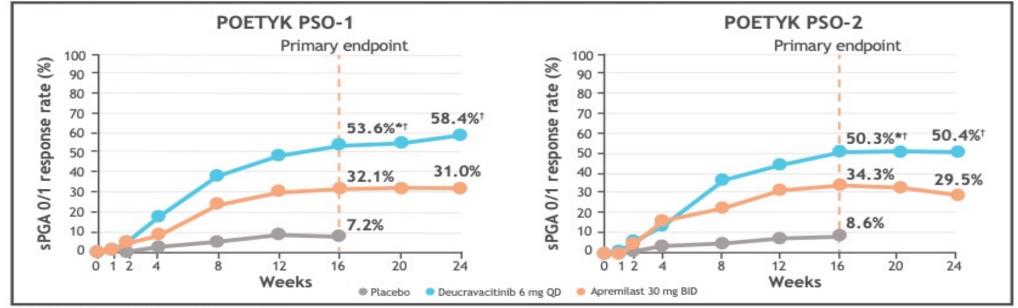
*>2-grade improvement or score of 3 among patients without normal EBA/ELA at baseline. EBA and ELA scales range from 0=none to 3=normal.

Table 3. Summary of the Efficacy Outcomes in ALLEGRO Phase 2b/3 (Full set Analysis)*3									
		Ritlecitinib once daily							
	Placebo† n=131	10 mg‡ n= 63	30 mg n=132	50 mg n= 130	200 mg/30 mg n= 130	200 mg/50 mg n= 132			
SALT score 20 d	or less respo	onse at wee	k 24 (Primary e	ndpoint)§ll					
n/N (%)	2/130 (2%)	1/59 (2%)	17/119 (14%)	29/124 (23%)	27/121 (22%)	38/124 (31%)			
Difference from placebo (95% CI)	-	0.16 (-4.05 to 7.58)	12.75 (6.69-20.36)	21.85 (14.65-30.23)	20·78 (13.65-29.18)	29.11 (21.17-37.91)			
p value	-	-	<0.0002	<0.0001	<0.0001	<0.0001			
SALT score 10 o		onse at wee	k 24 (Key seco	ndary endpoint) "¶ "				
n/N (%)	2/130 (2%)	1/59 (2%)	13/119 (11%)	17/124 (14%)	16/121 (13%)	27/124 (22%)			
Difference from placebo (95% Cl)	-	0.16 (-4.05 to 7.58)	9.39 (3.86-16.46)	12.17 (6.27-19.53)	11.68 (5.82-19.07)	20.24 (13.23-28.49)			
p value	-	-	0.0019	0.0002	0.0003	<0.0001			
SALT score 10 o	or less respo	onse at wee	k 24#**						
Estimated response rate (%)	1.54%	1.65%	10.62%	13.42%	12.87%	21.29%			
Difference from placebo (95% Cl)	-	0·12 (-3.67 to 3.91)	9.09 (3.10-15.07)	11.88 (5.42-18.33)	11.33 (4.93-17.74)	19.75 (11.91-27.59)			
p value	-	-	0.0029	0.0003	0.0005	< 0.0001			
	PGI-C response†† at week 24								
Estimated response rate (%)	9.23%	11.36%	41.95%	49.17%	45.40%	52.19%			
Difference from placebo (95% Cl)	-	2.15 (-6.91 to 11.22)	32.72 (21.95-43.50)	39.96 (28.85- 51.06)	36.18 (25.22-47.14)	42.96 (31.68-54·25)			
p value	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001			


Deucravacitinib (SOTYKTU[™])

Oral, Selective Tyrosine Kinase 2 (TYK2) Allosteric Inhibitor ("Allo-TYK2") For PsO

FDA Approved Sept 9, 2022


Deucravacitinib, an Oral, Selective Tyrosine Kinase 2 (TYK2) Allosteric Inhibitor For PsO

- Oral, selective tyrosine kinase 2 (TYK2) inhibitor ^{1.} Once daily 6 mg dosing.
- Binds to the TYK2 regulatory domain with high selectivity and inhibits TYK2 via an *"allosteric mechanism"*
- Locks the TYK2 receptor in its "inactive state"
 - Inhibits TYK2-mediated signaling by cytokines involved in psoriasis pathogenesis (eg, IL-23, IL-12, and Type 1 interferon)^{1,2}
 - —≥100-fold greater selectivity for TYK2 vs JAK1/3
 - ─ ≥2000-fold greater selectivity for TYK2 vs JAK2^{1,2}

Clear or Almost Clear at Week 16 Through Week 24 Deucravacitinib v Apremilast v Placebo

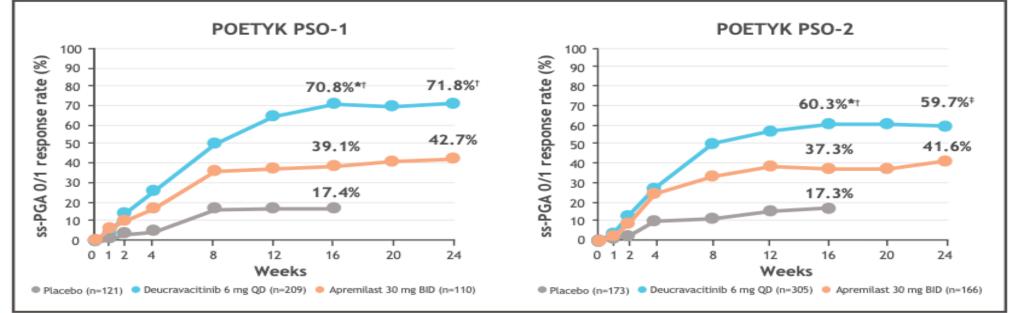
Figure 4. sPGA 0/1 response^a at Week 16 (coprimary endpoint) and through Week 24

Missing data were imputed with nonresponder imputation.

*Response defined as sPGA score of 0 or 1 with ≥2-point improvement from baseline.

*P<0.0001 vs placebo. ¹P<0.0001 vs apremilast.

BID, twice daily; QD, once daily; sPGA, static Physician's Global Assessment.


Armstrong A., et al Poster Maui Derm NPPA Summer 2021 Encore

Key secondary endpoints

• Statistical significance was achieved for deucravacitinib vs placebo and apremilast for multiple ranked secondary endpoints in both trials (Tables 2 and 3)

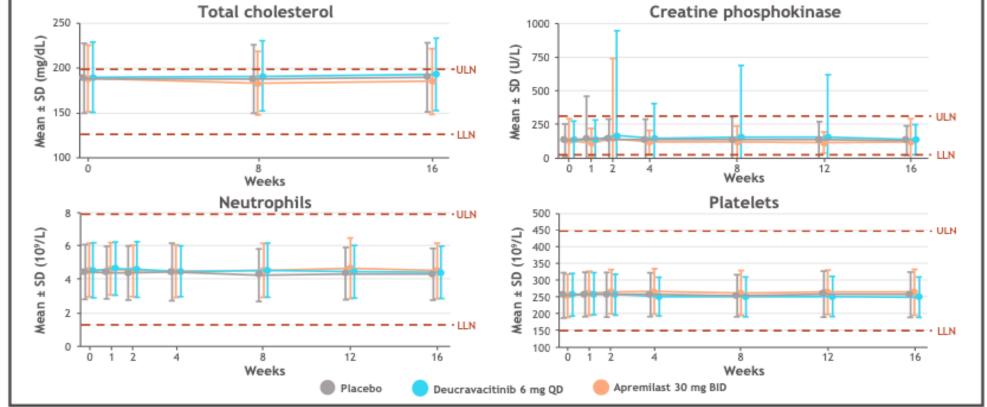
Scalp Psoriasis Deucravacitinib v Apremilast v Placebo

Figure 5. Scalp psoriasis: ss-PGA 0/1^a responses through Week 24

Missing data were imputed with nonresponder imputation.

Included patients with a baseline ss-PGA score of ≥3.

*P<0.0001 vs placebo. ¹P<0.0001 vs apremilast. ¹P=0.0002 vs apremilast.


BID, twice daily; QD, once daily; ss-PGA, scalp-specific Physician's Global Assessment.

Armstrong A., et al Poster Maui Derm NPPA Summer 2021 Encore

- Significantly greater improvement from baseline in PSSD symptom scores was observed for deucravacitinib vs apremilast at Week 16 in both trials (Figure 6)
- Significantly greater improvement from baseline for deucravacitinib vs apremilast was also seen at Week 24 in both trials

Laboratory Parameters of Interest

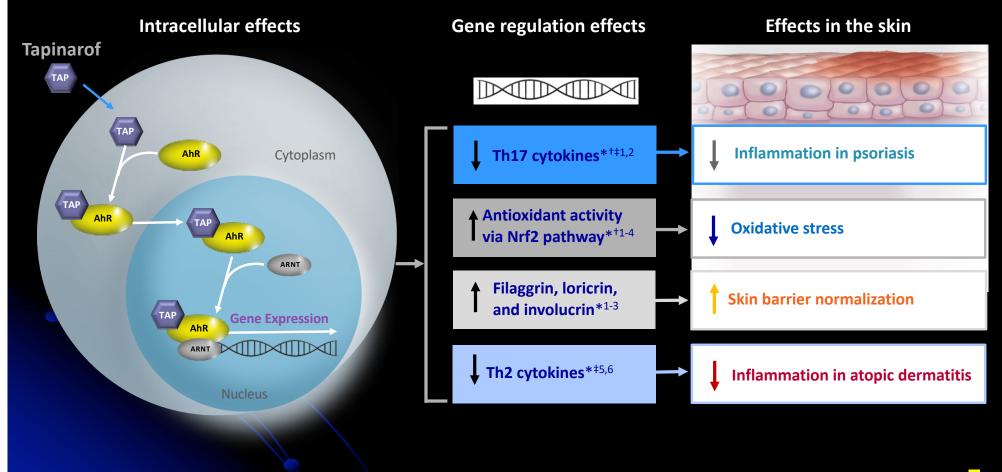
Figure 9. Selected laboratory parameters of interest (integrated), Weeks 0-16

BID, twice daily; LLN, lower limit of normal; QD, once daily; ULN, upper limit of normal.

Armstrong A., et al Poster Maui Derm NPPA Summer 2021 Encore

Deucravacitinib (PI)

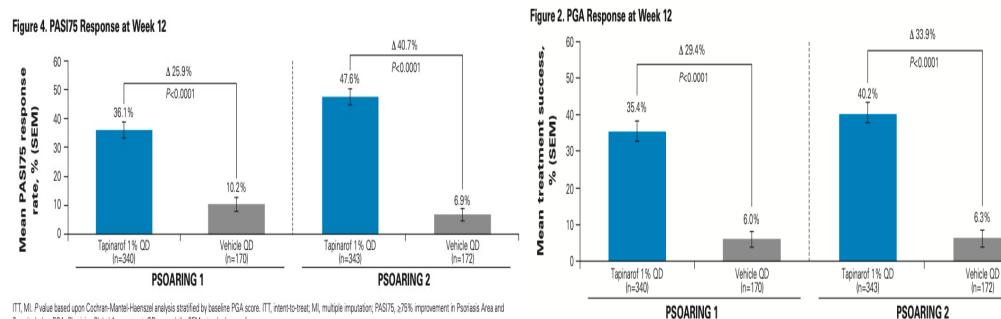
No laboratory requirement


- It is not known whether TYK2 inhibition may be associated with the observed or potential adverse reactions of Janus Kinase (JAK) inhibition.
- Cases of elevated CPK and rhabdomyolysis were reported in subjects treated with deucravacitinib resulting in interruption or discontinuation of deucravacitinib dosing.
- Elevated triglycerides and LFTs were reported
- Malignancies, including lymphomas were reported in the clinical trials: risk: benefit of continuing therapy should be considered
- Avoid use in patients with an active or serious infection.
- Consider the risks and benefits of treatment prior to initiating deucravacitinib in patients:
 - with chronic or recurrent infection (example: Hep B, C)
 - who have been exposed to TB
 - with a hx of a serious or an opportunistic infection
 - with underlying conditions that may predispose them to infection.
 - Herpes virus reactivation (e.g., herpes zoster, herpes simplex):

Approved New Non-Steroidal Topical Therapies Targeting Psoriasis

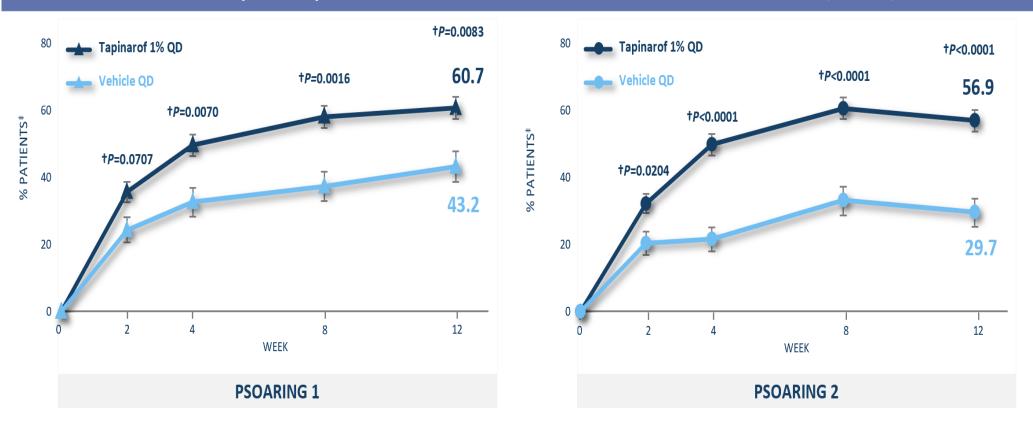
- Tapinarof 1% Cream (VTAMA®) : aryl hydrocarbon receptor agonist; QD treatment of mild, moderate and severe PsO in adults ≥ 18 yo
- Roflumilast 0.3% Cream (ZORYVE[™]): PDE-4 inhibitor;
 QD treatment of mild, moderate and severe plaque PsO,
 <u>including intertriginous</u> PsO age ≥ 12 yo

Tapinarof (VTAMA®) Cream in Mild-Moderate-Severe Psoriasis


Biologic Effects of Tapinarof

Demonstrated in vitro. [†]Demonstrated ex vivo. [‡]Demonstrated in mice models. AhR, aryl hydrocarbon receptor; Nrf2, nuclear factor erythroid 2-related factor 2; TAMA, therapeutic AhR modulating agent; Th, T helper cell. Bissonnette R, et al. *J Am Acad Dermatol*. 2021;84(4):1059-1067. 2. Smith SH et al. J Inv Dermatol 2017;137:2110–2119. 3. Furue M et al. J Dermatological Sci. 2015;80:83–88. 4. Tsuji G et al. J Invest Dermatol. 2012;132:59–68. 5. Dermavant DOF [DMVT-505 Th2 Polarization; Apr 2015]. 6. Dermavant DOF [DMVT-505 AD Mouse Model; Oct 2016].

PASI 75 Week 12

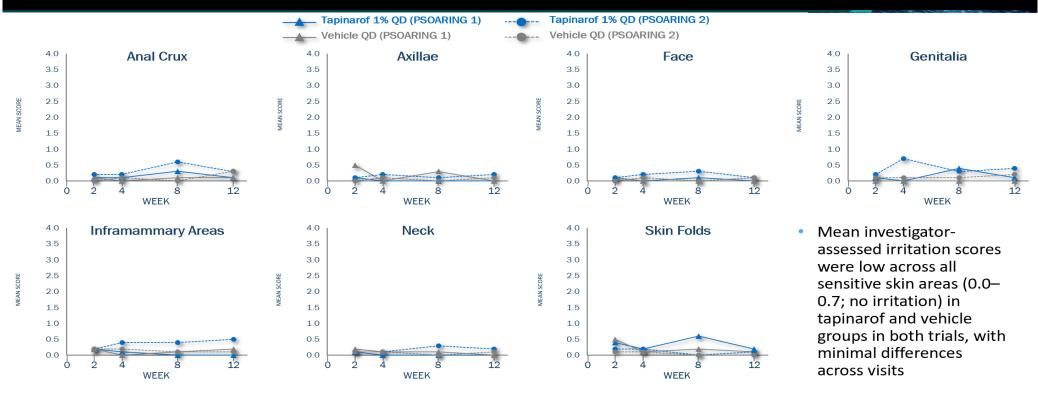

PGA Response Week 12

ITT, MI. P value based upon Cochran-Mantel-Haenszel analysis stratified by baseline PGA score. ITT, intent-to-treat; MI, multiple imputation; PASI75, 275% improvement in Psoriasis Area and Severity Index; PGA, Physician Global Assessment; QD, once daily; SEM, standard error of mean

Phase 3 PSOARING Program – Improvement in Peak Pruritus NRS of ≥4-point

Minimum 4-point Improvement in Peak Pruritus NRS from Baseline to Week 12 (ITT, MI)*

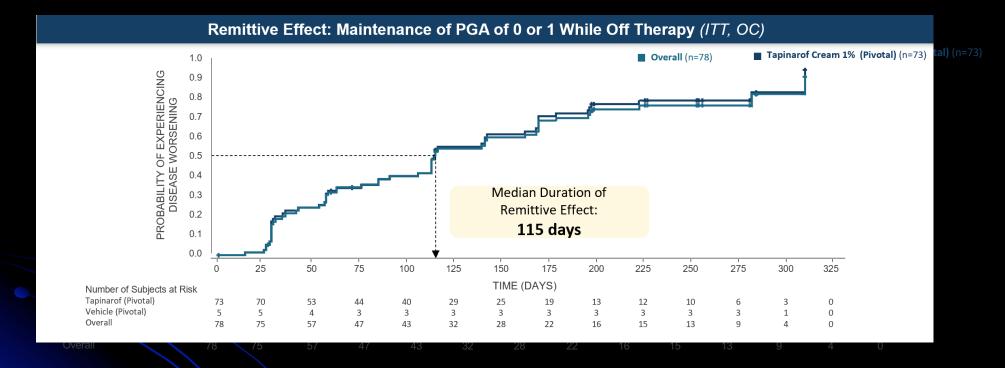
Tapinarof 1% QD Clinical Response of Patient with Plaque Psoriasis



PGA and PASI are global efficacy assessments. Example of one representative target lesion of a patient treated with tapinarof 1% QD; individual results may vary. Photographs demonstrate improvement in PGA and PASI at Week 4 and 12. PASI, Psoriasis Area and Severity Index; PGA, Physician Global Assessment; QD, once daily.

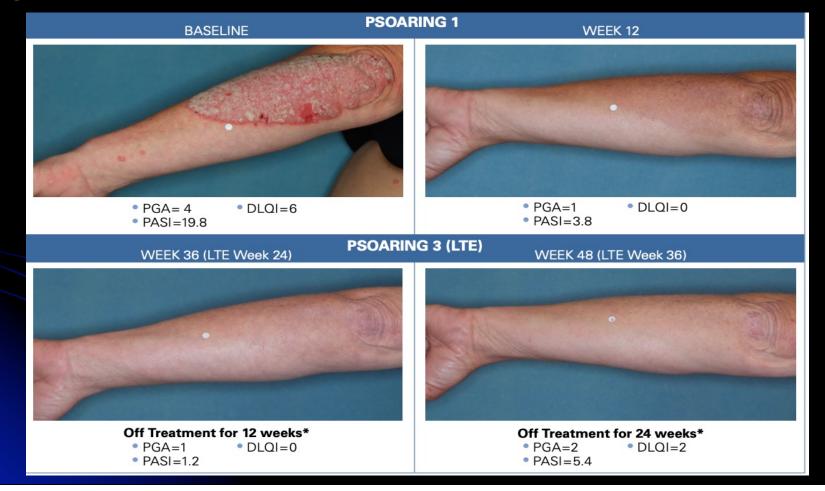
Lebwohl, Stein Gold, Strober, et al. Poster Presentation, Fall Clinical Virtual meeting 2020

Tapinarof Phase 3 PSOARING Program – Local Tolerability


Investigator-assessed local tolerability in sensitive skin areas

*Investigator-assessed irritation scores (0-4) assess the presence and overall degree of irritation at the application sites according to the Local Tolerability Scale (dryness, erythema, and peeling) – no irritation (0), mild (1), moderate (2), severe (3), very severe (4). The score ideally represents an "average" across all application sites. Scores were not assessed at baseline. QD, once daily.

Stein Gold L, et al. Poster presentation at Innovations in Dermatology 2021, Mar 16–20, 2021.


Tapinarof Phase 3 PSOARING LTE Interim Analysis Remittive effect for patients entering with PGA=0 was ~4 months

- Remittive effect off-treatment was defined as maintenance of PGA 0 (clear) or 1 (almost clear) while off therapy after achieving complete disease clearance (PGA of 0)
- The duration of remittive effect was likely an underestimate as study end, not disease worsening, truncated the duration for some patient:
 - Patients entering the study with PGA of 0: 115 days (85.0; 162.0)*
 - Patients entering the study with, or achieving, a PGA of 0 (n=299): 119.3 days (81.8)[†]

*Kaplan-Meier estimated median, 95% confidence interval. †Mean, standard deviation. CI, confidence interval; ITT, intention-to-treat, LTE, long term extension; OC, observed cases; PGA, Physician Global Assessment. 1. Strober B, et al. Poster presentation at the Innovations in Dermatology 2021, Mar 16–20, 2021.

Tapinarof 1% Cream: Remittive Effect x 24 Weeks

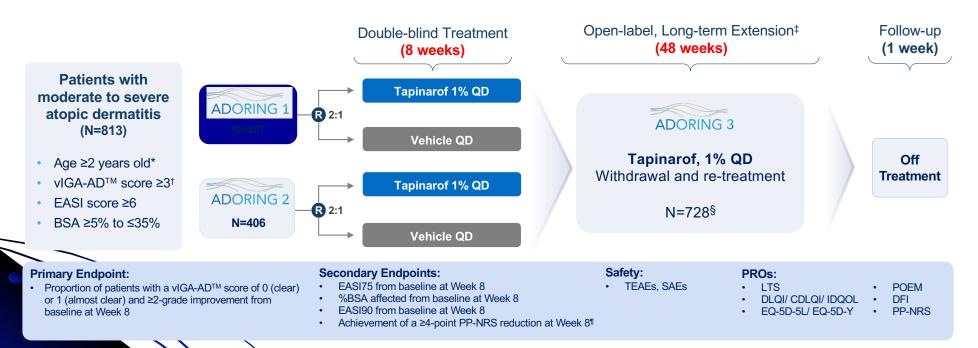
Tapinarof 1% QD AE Profile Consistent with Previous Studies^{1,2}

	PSOAF	RING 1	PSOAF	RING 2	
Patients, n (%)	Tapinarof 1% QD	Vehicle QD	Tapinarof 1% QD	Vehicle QD	
	(n=340)	(n=170)	(n=343)	(n=172)	
Folliculitis	70 (20.6)	2 (1.2)	54 (15.7)	1 (0.6)	
Contact dermatitis	13 (3.8)	1 (0.6)	16 (4.7)	0 (0.0)	
Headache	5 (1.5)	1 (0.6)	1 (0.3)	0 (0.0)	
Pruritus	4 (1.2)	0 (0.0)	2 (0.6)	0 (0.0)	
Dermatitis	1 (0.3)	0 (0.0)	4 (1.2)	0 (0.0)	
Study discontinuation due to AESI					
Folliculitis	6 (1.8)	0 (0.0)	3 (0.9)	0 (0.0)	
Contact dermatitis	5 (1.5)	0 (0.0)	7 (2.0)	0 (0.0)	
Headache	1 (0.3)	0 (0.0)	2 (0.6)	0 (0.0)	
Severity of folliculitis, n (%) among subset of patients with AESI of folliculitis					
Mild	51 (63.8)	1 (50.0)	44 (72.1)	0 (0.0)	
Moderate	28 (35.0)	1 (50.0)	17 (27.9)	1 (100.0)	
Severe	1(1.3)	0 (0.0)	0 (0.0)	0 (0.0)	

Folliculitis: non-infectious "keratosis pilaris like" follicular plugging

• The most common (>1% in any group) TEAEs were folliculitis, contact dermatitis, headache, pruritus, and dermatitis

Folliculitis was mostly mild or moderate in severity in both studies and study discontinuation due to folliculitis was low:
 1.8% (6/340) vs 0.0% (0/170) and 0.9% (3/343) vs 0.0% (0/172) in PSOARING 1 and 2, respectively


AE, adverse event; AESI, adverse event of special interest; MedDRA, Medical Dictionary for Regulatory Activities; QD, once daily; TEAE, treatment-emergent adverse event. **1.** Robbins K, et al. *J Am Acad Dermatol.* 2019;80:714–721; 2. Stein Gold L, et al. *J Am Acad Dermatol.* 2020; doi: 10.1016/j.jaad.2020.04.181. 3. Lebwohl, Stein Gold, Strober, et al. Poster Derecentation. Foll Clinical Victurel machine 2020.

Tapinarof (VTAMA®) Cream in Mild-Moderate-Severe ATOPIC DERMATITIS

ADORING Phase 3 Program

ADORING

p following age groups: 2-6 years, 7-11 years, 12-17 years, and ≥18 years. Adults (≥18 years) will comprise a maximum of approximately 20% of enrolled *A minimum of ~15% of rolled into of 4 (severe) 📶 represent a minimum of ~10% of the total randomized population; the remainder will have a vIGA-ADTM score of 3 (moderate). ‡Patients electina not to patients. [†]Patients with a vIGA .AD up visit 1 week after completion of the treatment period in ADORING 1 or 2. §Includes eligible patients from ADORING 1 and 2, the Maximal Usage PK trial, and ~125 participate in ADORING 3 will att directly into OORING 3. In patients ≥12 years with a baseline patient reported PP-NRS score ≥4. BSA, body surface area; CDLQI, Children's Dermatology Life additional patients aged 2 to <18 yes Quality Index: DFI, Dermatitis Family Im Dermatolog Life Quality Index; EASI, Eczema Area and Severity Index; EASI75, ≥75% improvement in Eczema Area and Severity Index score; EASI90, ≥90% improvement in Eczema Area and Severity core; EQ-5D-5L 5-level EuroQol-5 Dimension; EQ-5D-Y, child-friendly EuroQol-5 Dimension version; IDQOL, Infants' Dermatitis Quality of Life Index; LTS, Local ont Oriented Eccema Measure; PP-NRS, Patient-Reported Peak Pruritus-Numeric Rating Scale; PROs, patient reported outcomes; QD, once daily; R, randomized; Tolerability Scale; PK, pharmacokinetic; POEN SAE, serious adverse event; TEAE, treatment-emergent adverse event bleshidebathdvitalidanteantavestigabje@tbobtadestaestigabje@tbo

of this slide deck

ADORING 1 & 2 Baseline Demographics and Disease Characteristics

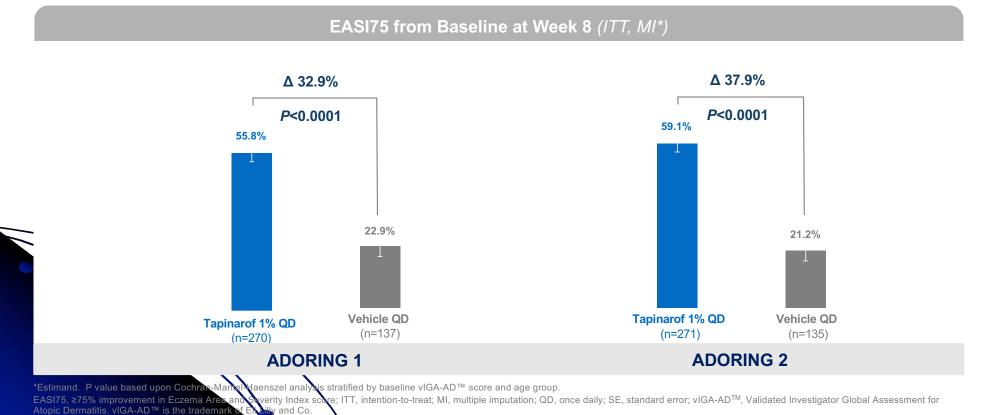
80% Pediatric Patients and Well Balanced Across Pediatric Age Cohorts \bigcirc

		ADORING 1			ADORING 2	
	Tapinarof 1% QD (n=270)	Vehicle QD (n=137)	Overall (n=407)	Tapinarof 1% QD (n=271)	Vehicle QD (n=135)	Overall (n=406)
Age, mean (SD)	15.6 (16.62)	15.6 (16.49)	15.6 (16.56)	16.4 (16.24)	16.7 (16.05)	16.5 (16.16)
Age group, n (%)						
2–6 years	76 (28.1)	39 (28.5)	115 (28.3)	65 (24.0)	32 (23.7)	97 (23.9)
7–11 years	75 (27.8)	37 (27.0)	112 (27.5)	64 (23.6)	32 (23.7)	96 (23.6)
12–17 years	67 (24.8)	34 (24.8)	101 (24.8)	89 (32.8)	44 (32.6)	133 (32.8)
≥18 years	52 (19.3)	27 (19.7)	79 (19.4)	53 (19.6)	27 (20.0)	80 (19.7)
Male, n (%)	130 (48.1)	66 (48.2)	196 (48.2)	117 (43.2)	58 (43.0)	175 (43.1)
Weight, kg, mean (SD)	46.69 (27.251)	47.69 (27.725)	47.03 (27.381)	51.52 (29.148)	54.03 (32.005)	52.36 (30.112)
BMI, kg/m², mean (SD)	21.38 (6.307)	22.06 (6.557)	21.61 (6.392)	22.65 (7.460)	23.25 (8.257)	22.85 (7.729)
vIGA-AD™ , n (%)						
3 – Moderate	244 (90.4)	122 (89.1)	366 (89.9)	228 (84.1)	113 (83.7)	341 (84.0)
4 – Severe	26 (9.6)	15 (10.9)	41 (10.1)	43 (15.9)	22 (16.3)	65 (16.0)
EASI, mean (SD)	12.24 (5.007)	12.86 (5.633)	12.45 (5.228)	13.45 (5.615)	13.09 (4.689)	13.33 (5.322)
BSA affected (%), mean (SD)	16.45 (8.666)	17.71 (9.500)	16.87 (8.964)	17.13 (8.743)	15.84 (7.888)	16.70 (8.480)
PP-NRS (all), mean (SD)	6.8 (2.33)	6.5 (2.39)	6.7 (2.35)	6.7 (2.37)	6.9 (2.09)	6.8 (2.28)
PP-NRS (≥12 years) , mean (SD)	6.5 (2.40)	6.3 (2.31)	6.4 (2.36)	6.3 (2.36)	6.5 (2.21)	6.4 (2.31)
PP-NRS (<12 years) , mean (SD)	7.0 (2.25)	6.6 (2.46)	6.9 (2.33)	7.1 (2.32)	7.4 (1.82)	7.2 (2.17)

Baseline disease characteristics reflect moderate to severe population, aged 2–81 years, and mean PP-NRS of 6.7–6.8

Global Assessment for Atopic Dermatitis. vIGA-AD

BMI, body mass index; BSA, body surface area; ENSI, Eczema Area and Severity Index; PP-NRS, Peak Pruritus-Numeric Rating Scale; QD, once daily; SD, standard deviation; vIGA-ADTM, Validated Investigator the trademark of Eli Lilly and Co.


This slide and its contents are subject to the disclaimer at the beginning

of this slide deck

ADORING 1 & 2 – EASI75

 Greater Than 55% of Tapinarof-Treated Patients Achieved At Least 75% Improvement In EASI by Week 8

Source: 14.2.2.1.1.

This slide and its contents are subject to the disclaimer at the beginning of this slide deck

ADORING 1 & 2 Summary of TEAEs – Safety Population

 Tapinarof Demonstrated a Favorable Safety Profile in AD Patients Down to 2 Years of Age

Patients, n (%)	Tapinarof 1% QD (n=270)	Vehicle QD (n=137)	Tapinarof 1% QD (n=271)	Vehicle QD (n=133)
AESI (treatment emergent)				
Contact dermatitis	4 (1.5)	3 (2.2)	3 (1.1)	2 (1.5)
Follicular event	<mark>27 (10.0)</mark>	<mark>1 (0.7)</mark>	<mark>24 (8.9)</mark>	<mark>2 (1.5)</mark>
Headache	19 (7.0)	3 (2.2)	4 (1.5)	0
TEAE leading to treatment discontinuation	6 (2.2)	6 (4.4)	4 (1.5)	5 (3.8)
TEAE leading to trial discontinuation	5 (1.9)	5 (3.6)	4 (1.5)	4 (3.0)

- · Very low rates of treatment and trial discontinuation due to adverse events
- Trial and treatment discontinuation greater in vehicle-treated group than Tapinarof-treated group
- 91% of subjects from ADORING 1 & 2 elected to enroll into the Phase 3 ADORING 3, a 48 week open-label, long-term safety study

Follicular event includes folliculitis, application site folliculitis, follicular eczema, and keratosis pilaris.

AD, atopic dermatitis; AE, adverse event; AESI, adverse event of special interest; COVID-19, coronavirus disease 2019; QD, once daily; TEAE, treatment-emergent adverse event.

Source: 14.3.1.1.

This slide and its contents are subject to the disclaimer at the beginning

of this slide deck

Roflumilast 0.3% Cream (ZORYVETM) Plaque (Mild-Moderate-Severe) Psoriasis

Roflumilast: PDE - 4 Inhibitor

Roflumilast: PDE-4 inhibitor (200-300x more powerful inhibitor than apremilast)

Indications Being Pursued

- 1. Psoriasis: approved 7/2022
- 2. Atopic Dermatitis
- 3. Seborrheic Dermatitis (ARQ 154-304)
- 4. Vitiligo (ARQ 252-213)

Vehicles

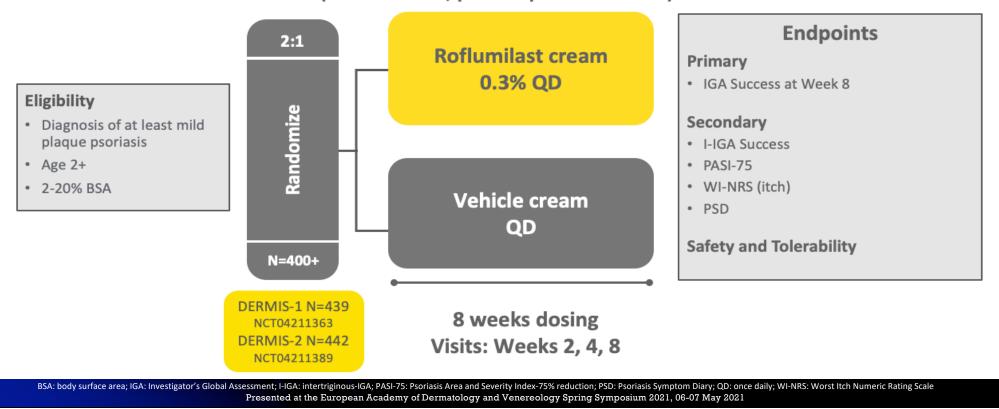
- Cream
- Foam
- Lotion

Roflumilast Cream 0.3%, a Once-Daily, Potent Phosphodiesterase-4 Inhibitor, in Chronic Plaque Psoriasis Patients: Efficacy and Safety From DERMIS-1 and DERMIS-2 Phase 3 Trials

Mark Lebwohl,¹ Leon H. Kircik,² Angela Moore, ³ Linda Stein Gold,⁴ Zoe D. Draelos,⁵ Melinda J. Gooderham,⁶ Kim A. Papp,⁷ Jerry Bagel,⁸ Neal Bhatia,⁹ James Del Rosso,¹⁰ Laura K. Ferris,¹¹ Lawrence J. Green,¹² Adelaide A. Hebert,¹³ Terry Jones,¹⁴ Steven E. Kempers,¹⁵ David M. Pariser,¹⁶ Paul S. Yamauchi,¹⁷ Matthew Zirwas,¹⁸ Patrick Burnett,¹⁹ Robert C. Higham,¹⁹ Lynn Navale,¹⁹ David R. Berk¹⁹

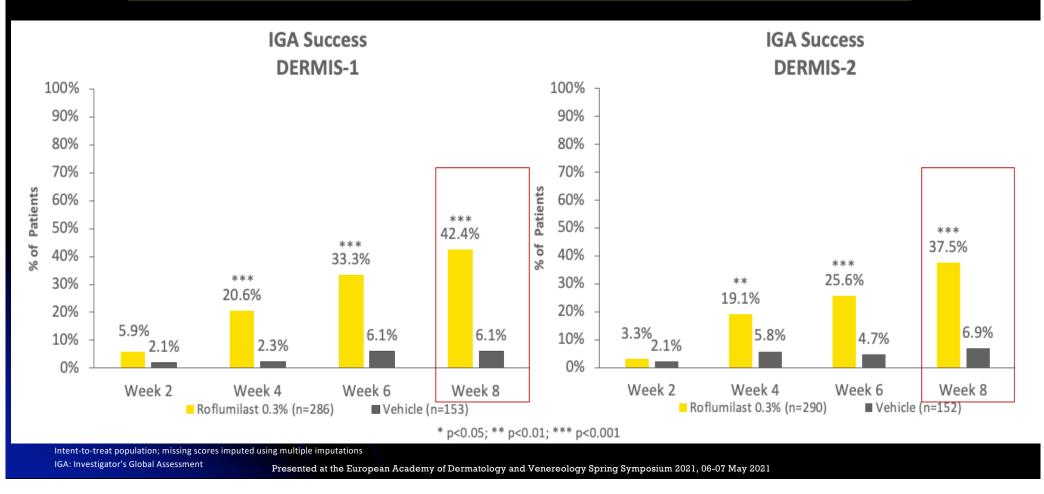
¹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ²Icahn School of Medicine at Mount Sinai, New York, NY, Indiana Medical Center, Indianapolis, IN, Physicians Skin Care, PLLC, Louisville, KY, USA; ⁴Inington Research Center, Artington, TX, USA, Baylor University Medical Center, Daltas, TX, USA; ⁴Henry Ford Medical Center, Detroit, MI, USA; ⁵Dermatology Consulting Services, High Point, NC, Skin School, Probity Medical Research, and Queen's University, Peterborough, ON, Canada; ⁷Probity Medical Research, Waterloo, ON, Canada; ⁴Penny Ford Medical Center, Detroit, MI, USA; ⁵Dermatology Consulting Services, High Point, NC, other for Dermatology, Probity Medical Research, and Center Services, High Point, NC, Canada; ⁴Probity Medical Research, Waterloo, ON, Canada; ⁴Pony, ND, Danada; ¹Probity Medical Research, Waterloo, ON, Canada; ⁴Penny, Point, NC, Canada; ⁴University, Peterborough, ON, Canada; ⁴Pony, Physical Research, Windsor, NJ, USA; ⁴Therapeutics Cinical Research, San Diego, CA, USA; ¹⁰DR Permatology Research Center, LLC, Las Vegas, NV, USA; ¹⁰University of Pittsburgh, Department of Dermatology, Physical Research, USA; ¹⁰DR Permatology, PA, USA; ¹⁰Center, Fidey, MN, USA; ¹⁰Dater Medical School, Houston, TX, USA; ¹⁰Uls, ¹⁰Uls,

Disclosures: Mark Lebwohl, Leon H. Kircik, Angela Moore, Linda Stein Gold, Zoe D. Draelos, Melinda J. Gooderham, Kim A. Papp, Jerry Bagel, Neal Bhatia, James Del Rosso, Laura K. Ferris, Lawrence J. Green, Adelaide A. Hebert, Terry Jones, Steven E. Kempers, David M. Pariser, Paul S, Yamauchi, and Matthew Zirwas are investigators and/or consultants for Arcutits Biotherapeutics, Inc. and received grants/research funding and/or honoraria; Robert C. Higham, Lynn Navale, and David R. Berk are employees of Arcutis Biotherapeutics, Inc. Additional disclosures provided on request.

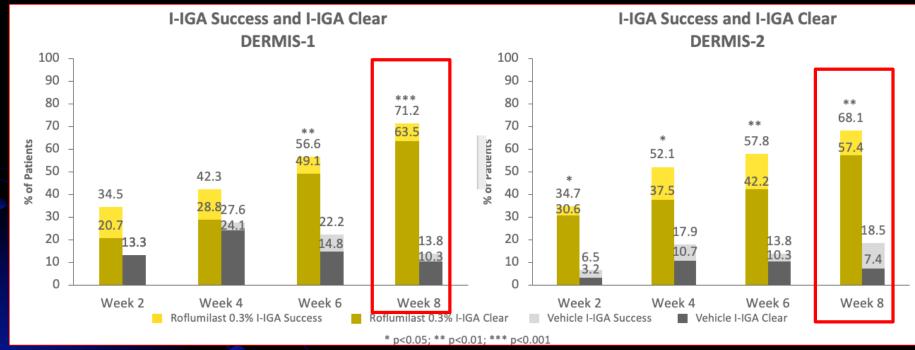

This work was supported by Arcutis Biotherapeutics, Inc.

Writing support was provided by Christina McManus, PhD, Alligent Biopharm Consulting LLC, and funded by Arcutis Biotherapeutics, Inc.

Presented at the European Academy of Dermatology and Venereology Spring Symposium 2021, 06-07 May 2021

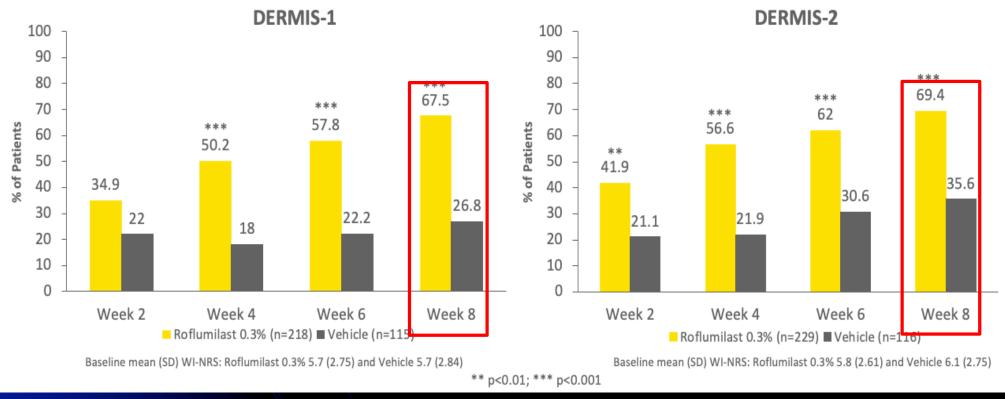

DERMIS-1 & DERMIS-2: Phase 3 PsO Identical Study Design and Endpoints

Randomized, Double-blind, Vehicle-controlled, Multicenter Studies (Two identical, parallel phase 3 studies)


Efficacy on IGA Success in Both Phase 3 Studies

I-IGA Success = Clear or Almost Clear with at least a 2-grade improvement from baseline

Roflumilast Was Highly Effective for Intertriginous Plaques in DERMIS-1 and DERMIS-2 Exactly where you DON'T want to use steroids



I-IGA-intent-to-treat population: patients with intertriginous area involvement with severity of the intertriginous lesions at least mild (I-IGA ≥2) at baseline. Observed data. P values for I-IGA success I-IGA: Intertriginous-Investigator's Global Assessment Presented at the European Academy of Dermatology and Venereology Spring Symposium 2021, 06-07 May 2021

Rapid Itch Response in Both DERMIS-1 and DERMIS-2

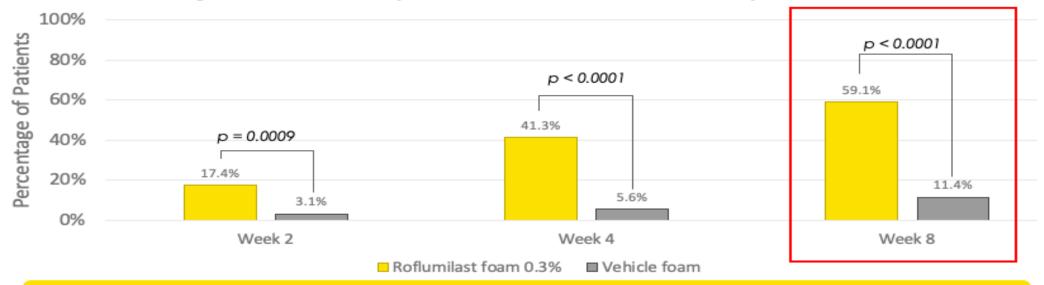
Proportion of patients who achieved a \geq 4-point improvement in WI-NRS from baseline score of \geq 4

Evaluated in a subset of the intent-to-treat population of patients with WI-NRS pruritus score ≥4 at baseline; missing scores imputed using multiple imputations

SD: standard deviation; WI-NRS: Worst Itch Numeric Rating Scale

Presented at the European Academy of Dermatology and Venereology Spring Symposium 2021, 06-07 May 2021

Roflumilast Cream 0.3%: DERMIS-1 & DERMIS-2


IGA: Investigator's Global Assessment; I-IGA: intertriginous-IGA

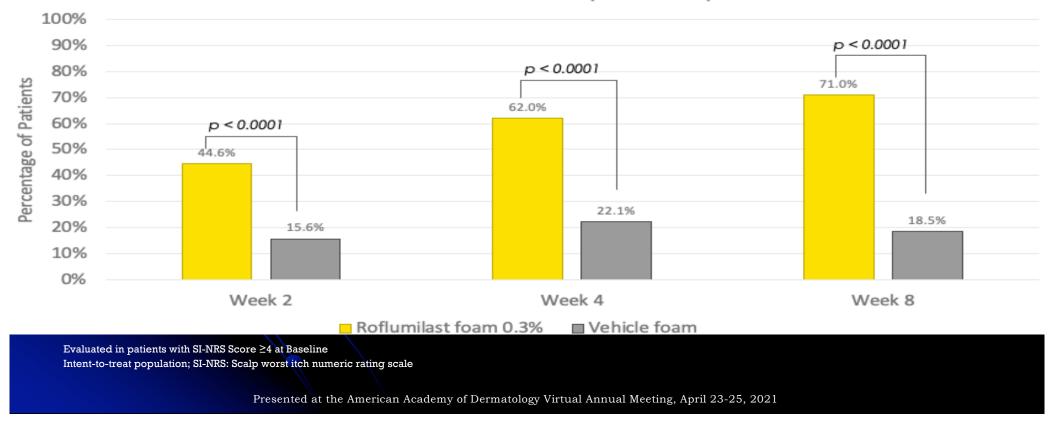
Presented at the European Academy of Dermatology and Venereology Spring Symposium 2021, 06-07 May 2021

170

Roflumilast Foam for Scalp Psoriasis (Not Yet Available)

Approx 60% of Patients Achieved S-IGA Success at Week 8 Significant Efficacy was Demonstrated as Early as Week 2

34.3% of patients on roflumilast achieved S-IGA = 0 (clear) versus 3.4% on vehicle

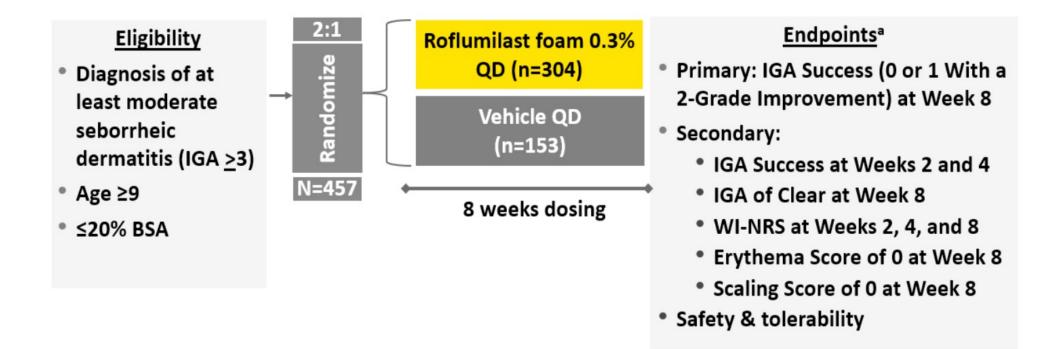

Intent-to-treat population; S-IGA: Scalp-Investigator's Global Assessment

IGA Success = Clear or Almost Clear with at least a 2-grade improvement from baseline

Presented at the American Academy of Dermatology Virtual Annual Meeting, April 23-25, 2021

Scalp Itch: Roflumilast-Treated Patients had SI-NRS 4-point Response as Early as Week 2

>70% of Patients Achieved a SI-NRS 4-point Response at Week 8


Efficacy and Safety of Roflumilast Foam 0.3% in Patients With Seborrheic Dermatitis in a Phase 3 Trial

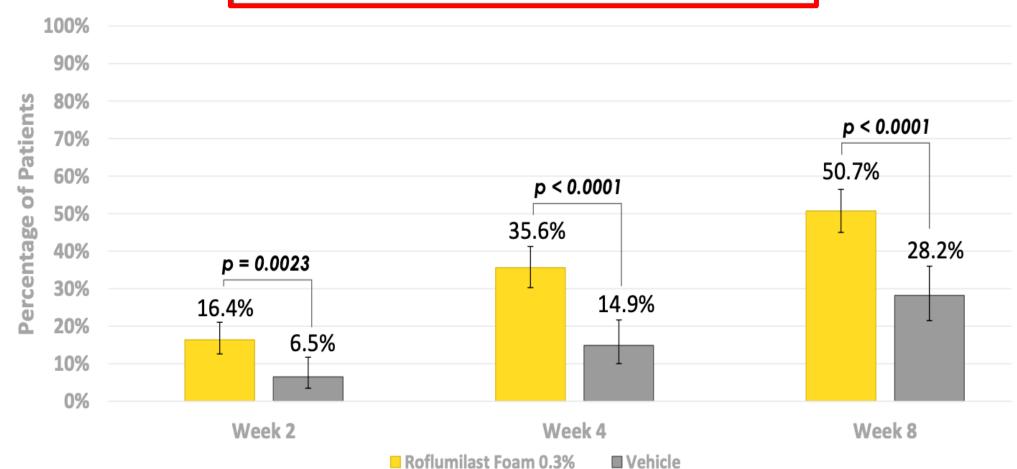
Andrew Blauvelt¹, Javier Alonso-Llamazares², Neal Bhatia³, Zoe D. Draelos⁴, Janet DuBois⁵, Seth B. Forman⁶, Melinda Gooderham⁷, Scott T. Guenthner⁸, Adelaide A. Hebert⁹, Edward Lain¹⁰, Angela Y. Moore¹¹, Kim A. Papp¹², Linda Stein Gold¹³, Matthew Zirwas¹⁴, Saori Kato¹⁵, Scott Snyder¹⁵, David Krupa¹⁵, Patrick Burnett¹⁵, David R. Berk¹⁵, David H. Chu¹⁵

¹Oregon Medical Research Center, Portland, OR, USA.; ²Driven Research LLC, Coral Gables, FL, USA; ³Therapeutics Clinical Research, San Diego, CA, USA; ⁴Dermatology Consulting Services, High Point, NC, USA; ⁵DermResearch, Inc., Austin, TX, USA; ⁶ForCare Medical Center, Tampa, FL, USA; ⁷SKiN Centre for Dermatology, Probity Medical Research and Queen's University, Peterborough, ON, Canada; ⁸The Dermatology Center of Indiana, PC, and The Indiana Clinical Trials Center, PC, Plainfield, IN, USA; ⁹UT Health McGovern Medical School, Houston, TX, USA ¹⁰Sanova Dermatology, Austin, TX, USA; ¹¹Arlington Research Center, Arlington, TX, USA and Baylor University Medical Center, Dallas, TX, USA; ¹²Probity Medical Research and K Papp Clinical Research, Waterloo, ON, Canada; ¹³Henry Ford Medical Center, Detroit, MI, USA; ¹⁴Dermatologists of the Central States, Probity Medical Research, and Ohio University, Bexley, OH, USA; ¹⁵Arcutis Biotherapeutics, Inc., Westlake Village, CA, USA.

Presented at the European Academy of Dermatology and Venereology (EADV) Congress, September 7-11, 2022, Milano, Italy.

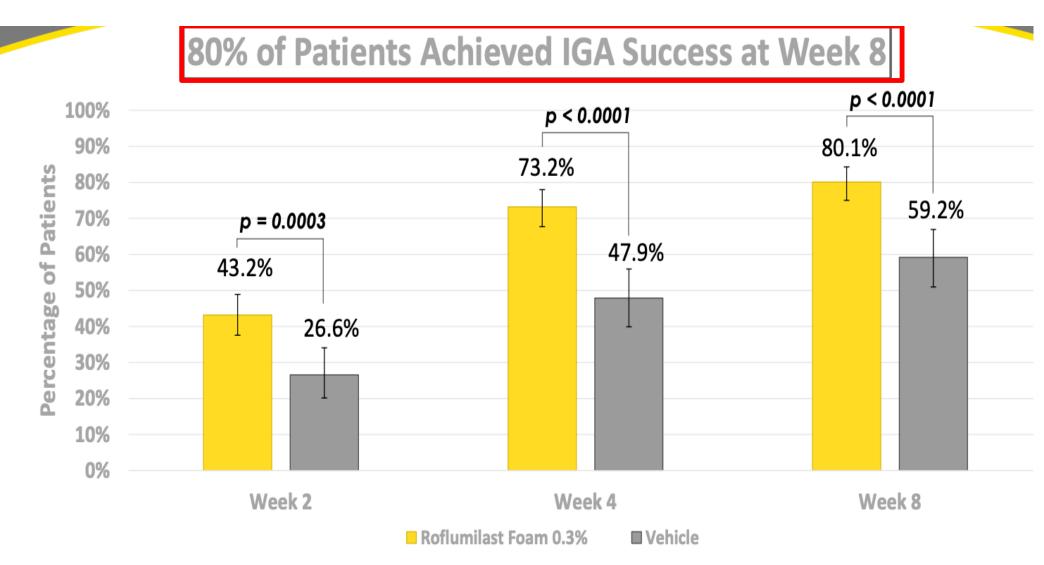
Study Design

*As this study is a single pivotal trial, the statistical significance of the primary endpoint was assessed at the 1% significance level (2-sided). To control for multiple testing, the 1% alpha was partitioned to .0033 for WI-NRS endpoints and .0067 for other secondary endpoints


AE, adverse event; BSA, body surface area; IGA, Investigator Global Assessment; QD, once daily; SAE, serious adverse event; SD, seborrheic dermatitis; WI-NRS, Worst Itch Numeric Rating Scale.

Presented at the European Academy of Dermatology and Venereology (EADV) Congress, September 7-11, 2022, Milano, Italy.

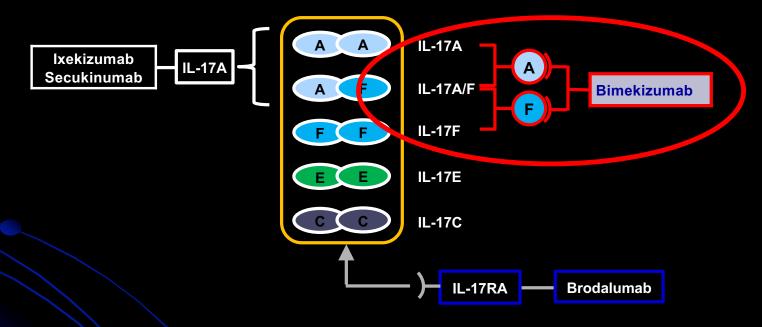
	Roflumilast Foam 0.3% (n=304)	Vehicle (n=153)		Roflumilast Foam 0.3% (n=304)	Vehicle (n=153)
IGA score, n (%)			A e in years, mean (SD)	43.2 (16.8)	41.8 (17.5)
3 (moderate)	287 (94.4)	141 (92.2)	Sex		
4 (severe)	17 (5.6)	12 (7.8)	Male, n (%)	153 (50.3)	75 (49.0)
Erythema score, n (%)			Female, n (%)	151 (49.7)	78 (51.0)
2 (mild)	0	1 (0.7)	Race, n (%)		
3 (moderate)	282 (92.8)	141 (92.2)	American Indian or Alaska Native	4 (1.3)	0
4 (severe)	22 (7.2)	11 (7.2)	Asian	18 (5.9)	10 (6.5)
Scaling score, n (%)		()	Black or African American	36 (11.8)	15 (9.8)
	0	٥	Native Hawaiian or Other Pacific Islander	0	1 (0.7)
2 (mild)	0	0	White	234 (77.0)	122 (79.7)
3 (moderate)	256 (84.2)	130 (85.0)	More than 1 race	1 (0.3)	1 (0.7)
4 (severe)	48 (15.8)	23 (15.0)	Other	11 (3.6)	4 (2.6)
WI-NRS, mean score (Std Dev)	5.06 (2.34)	4.74 (2.29)	Ethnicity		
WI-NRS score ≥4, n (%)	206 (67.8)	98 (64.1)	Hispanic or Latino	69 (22.7)	28 (18.3)
BSA, mean % (Std Dev)	2.89 (2.03)	2.98 (2.57)	Not Hispanic or Latino	235 (77.3)	125 (81.7)


Patients, n (%)	Roflumilast Foam 0.3% (n=304)	Vehicle (n=153)
Scalp	291 (95.7)	136 (88.9)
Face	186 (61.2)	98 (64.1)
Eyelids Involved	29 (9.5)	13 (8.5)
Ears	146 (48.0)	79 (51.6)
Neck	33 (10.9)	13 (8.5)
Trunk	28 (9.2)	18 (11.8)
Other	11 (3.6)	4 (2.6)

>50% of Patients Achieved IGA of Clear

IGA Clear = IGA Score of 0. Intent-to-treat population; missing scores imputed using multiple imputations, p-values are not adjusted for multiple testing. Error bars represent 95% confidence interval.

IGA, Investigator Global Assessment.


IGA Success = Clear or Almost Clear with at least a 2-grade improvement from baseline. Intent-to-treat population; missing scores imputed using multiple imputations. Error bars represent 95% confidence interval. Statistical significance was concluded at the 1% significance level (2-sided).

n (%)	Roflumilast Foam 0.3% (n=304)	Vehicle (n=153)
Patients with any TEAE	70 (23.0)	33 (21.6)
Patients with any treatment-related TEAE	8 (2.6)	5 (3.3)
Patients with any treatment-emergent SAE*	1 (0.3)	0
Patients who discontinued study due to AE ⁺	2 (0.7)	3 (2.0)
Most common TEAE		
(>1% in any group), professional No Safet	y Signal	5 (3.3)
COVID-19 No Safet	y Signal 4(1.3)	5 (3.3) 3 (2.0)
COVID-19 No Safet		1000 * 1200 *
COVID-19 No Safet	4 (1.3)	3 (2.0)
COVID-19 No Safet Urinary tract infection Nausea	4 (1.3) 5 (1.6)	3 (2.0) 0

IL-17 Inhibitors

Secukinumab: approved in 2015 as Cosentyx[®]
Ixekizumab: approved in 2016 as Taltz[®]
Brodalumab: approved in 2017 as Siliq[®]
Bimekizumab......

Targeting the IL17 Family of Cytokines

Adapted From: Lønnberg A, Zachariae C, Skov L. Clin Cosmet Investig Dermatol. (2014) 7: 251-259

Bimekizumab Comparator Trials

ORIGINAL ARTICLE

Bimekizumab versus Adalimumab in Plaque Psoriasis

R.B. Warren, A. Blauvelt, J. Bagel, K.A. Papp, P. Yamauchi, A. Armstrong, R.G. Langley, V. Vanvoorden, D. De Cuyper, C. Cioffi, L. Peterson, N. Cross, and K. Reich

Bimekizumab versus ustekinumab for the treatment of moderate to severe plaque psoriasis (BE VIVID): efficacy and safety from a 52-week, multicentre, double-blind, active comparator and placebo controlled phase 3 trial

Kristian Reich, Kim A Papp, Andrew Blauvelt, Richard G Langley, April Armstrong, Richard B Warren, Kenneth B Gordon, Joseph F Merola, Yukari Okubo, Cynthia Madden, Maggie Wang, Christopher Cioffi, Veerle Vanvoorden, Mark Lebwohl ORIGINAL ARTICLE

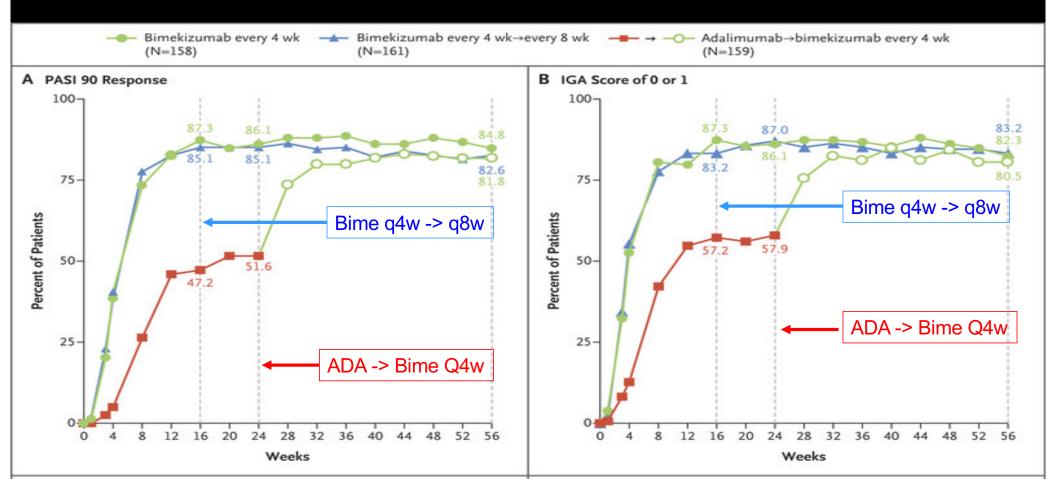
Bimekizumab versus Secukinumab in Plaque Psoriasis

Kristian Reich, M.D., Ph.D., Richard B. Warren, M.D., Ph.D., Mark Lebwohl, M.D., Melinda Gooderham, M.D., Bruce Strober, M.D., Ph.D., Richard G. Langley, M.D., Carle Paul, M.D., Ph.D., Dirk De Cuyper, M.D., Veerle Vanvoorden, M.Sc., Cynthia Madden, M.D., Christopher Cioffi, Ph.D., Luke Peterson, M.S., and Andrew Blauvelt, M.D.

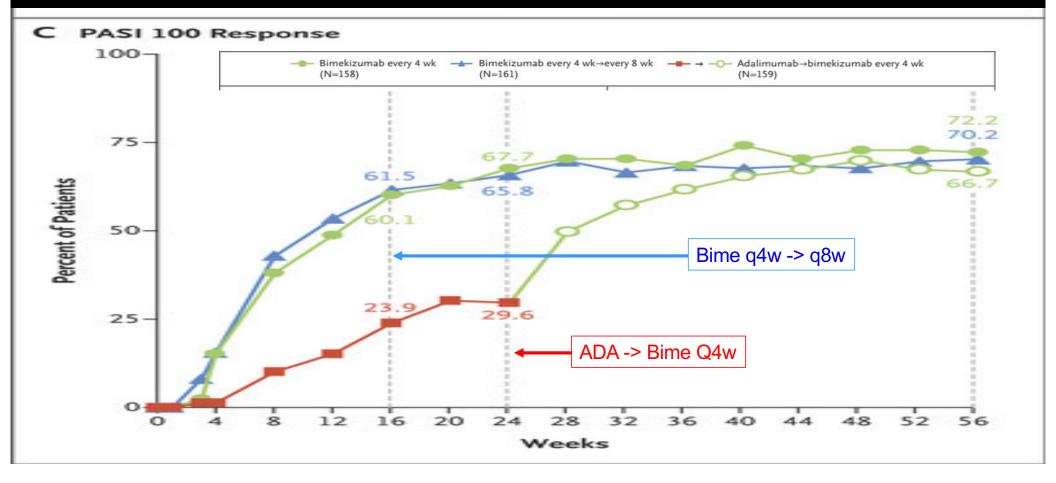
Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): a multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial

Kenneth B Gordon, Peter Foley, James G Krueger, Andreas Pinter, Kristian Reich, Ronald Vender, Veerle Vanvoorden, Cynthia Madden, Katy White, Christopher Cioffi, Andrew Blauvelt

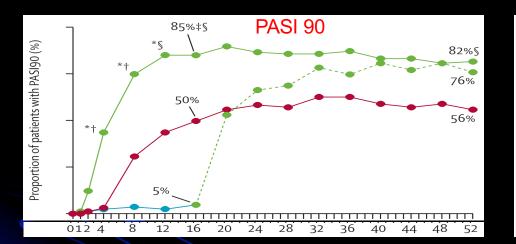
HEAD TO HEAD COMPARATOR TRIALS IN PsO

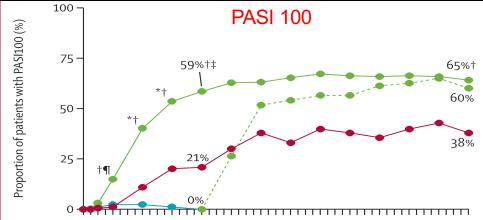

Bimekizumab vs. Adalimumab (TNFi)

Bimkizumab vs Ustekinumab (IL-12/23i)


Bimekizumab vs Secukinumab (IL-17-Ai)

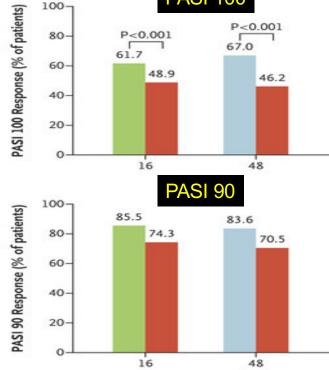
Bimekizumab Dose = 320 mg

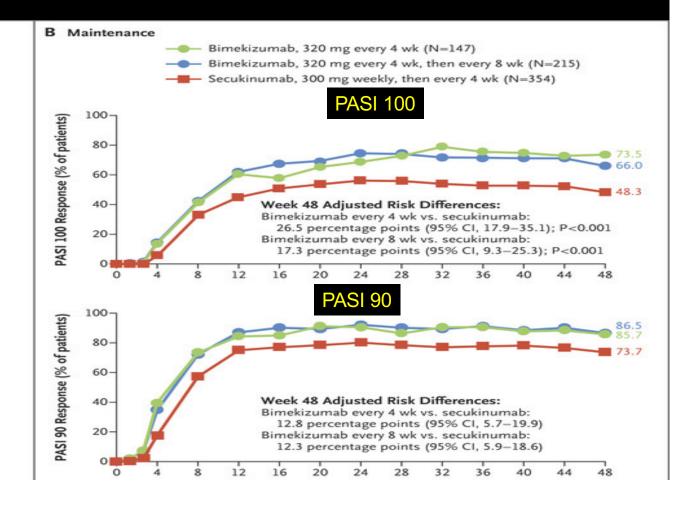

Bimekizumab vs. Adalimumab PASI 90 and IGA 0/1



Bimikizumab vs. Adalimumab: PASI 100

BIMEKIZUMAB VS USTEKINUMAB





Bimekizumab vs Secukinumab: PASI 100 & 90

Candida Signal With Bimekizumab

IL-17 pathway antagonist	%	
Bimekizumab BE READY (Weeks 16–56) BE VIVID (Weeks 0–52) BE SURE (Weeks 24–56)	10.0–15.1 18.2 9.4–14.5	
Secukinumab ERASURE (Weeks 0–52) FIXTURE (Weeks 0–52)	0.8–2.0 2.3–4.7	BIME: oral candidiasis seen; Not vulvo-vaginal due to different immune-protective pathway in vagina vs oral-pharynx
Ixekizumab UNCOVER-1/2/3 (Weeks 0–60)	3.4	
Brodalumab AMAGINE 1 (Weeks 0–52) AMAGINE 2 (Weeks 0–52) AMAGINE 3 (Weeks 0–52)	2.8 4.5 5.0	Data slide modified from B. Strober MD, PhD talk Maui
		Derm 2022

IL-17 Plays an Important Role in Oral Candidiasis....Less So in Vulvovaginal Candida

• *Candida* hyphal transition (invasive state) triggers an innate immune response at the epithelia, inducing signalling of neutrophil movement to vaginal mucosa via S100A8 alarmin and IL-1β

Vulvovaginal candidiasis

- S100A8 alarmin and IL-1β play a central role in neutrophil recruitment against Candida in the vaginal cavity
 IL-17 plays a minor role in
 - vulvovaginal candidiasis

Oral candidiasis

- IL-17 plays a central role in neutrophil recruitment against Candida in the oral cavity
- Thus, IL-17 inhibition plays a major role in oral candidiasis

Inhibiting IL-17 with anti-IL-17 therapy predisposes for oral candidiasis, but not vulvovaginal candidiasis, due to different mechanisms of innate cell recruitment at the different anatomical sites

• 1. Willems HME, et al. J. Fungi 2020;6;27–47. 2. Jabra-Rizk MA, et al. Infect Immun 2016;84:2724–2739. 3. Yano J, et al. Infect Immun 2018;86:e00684-17.

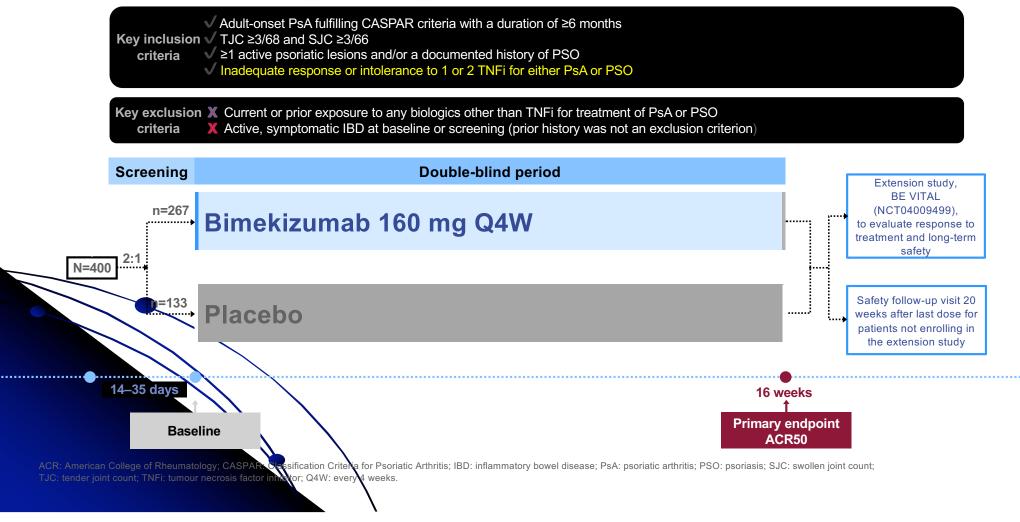
Bimekizumab: Approval Delayed....Manufacturing Issue

- Brussels (Belgium), 13th May 2022 08:00 CEST Regulated Information – Inside Information – UCB, a global biopharmaceutical company, announced today that the U.S. Food and Drug Administration (FDA) has issued a Complete Response Letter (CRL) regarding the Biologics License Application (BLA) for bimekizumab for the treatment of adults with moderate to severe plaque psoriasis.
- The letter indicates that the FDA cannot approve the application in its current form. The CRL states that certain pre-approval inspection observations must be resolved before approval of the application. We are cooperating with the FDA and are working to address these observations as expeditiously as possible.

BIMEKIZUMAB: PsA Data Phase 3

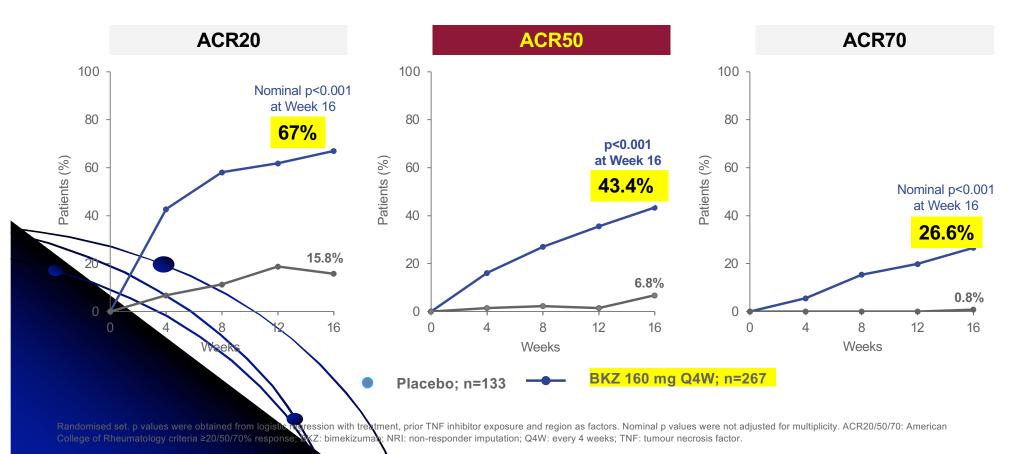
Bimekizumab PsA Dose = 160 mg

Bimekizumab in Patients with Active Psoriatic Arthritis and an Inadequate Response to Tumour Necrosis Factor Inhibitors: 16-Week Efficacy and Safety from BE COMPLETE, a Phase 3, Multicentre, Randomised, Placebo-Controlled Study


Joseph F. Merola,¹ Iain B. McInnes,² Christopher Ritchlin,³ Philip J. Mease,⁴ Robert Landewé,⁵ Akihiko Asahina,⁶ Yoshiya Tanaka,⁷ Richard B. Warren,⁸ Laure Gossec,⁹ Dafna D. Gladman,¹⁰ Frank Behrens,¹¹ Barbara Ink,¹² Deepak Assudani,¹² Rajan Bajracharya,¹² Jason Coarse,¹³ Laura C. Coates¹⁴

¹Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA; ²Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; ³Department of Medicine, University of Rochester, Rochester, New York, USA; ⁴Swedish Medical Center and Providence St. Joseph Health and University of Washington, Seattle, Washington, USA; ⁵Amsterdam Rheumatology & Clinical Immunology Center, Amsterdam, and Zuyderland MC, Heerlen, The Netherlands; ⁶Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan; ⁷The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan; ⁸Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester, UK; ⁹Sorbonne Université, Pitié Salpêtrière Hospital, Paris, France; ¹⁰Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Institute of Medical Science, University of Toronto, Ontario, Canada; ¹¹Rheumatology University Hospital and Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Goethe University, Frankfurt am Main, Germany; ¹²UCB Pharma, Slough, UK;
 ¹³UCB Pharma, Raleigh, North Carolina, USA; ¹⁴Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Diseases, University of Oxford and Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, UK.

EULAR 2022 | Congress | 1-4 June 2022

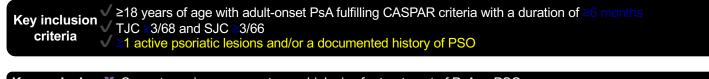

Presentation number: OP0255

Study Design: BE COMPLETE

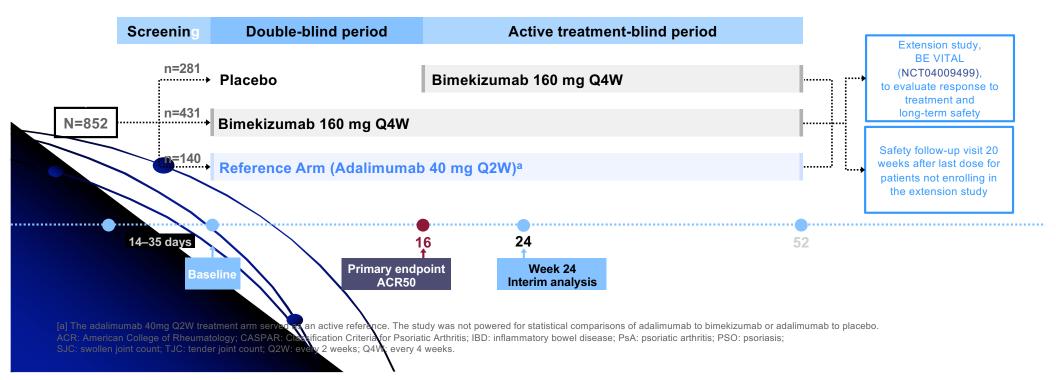
Efficacy: ACR Response Criteria to Week 16 (NRI)

BKZ demonstrated improvements vs placebo in achievement of all ACR response criteria at Week 16

Bimekizumab in bDMARD-Naïve Patients with Psoriatic Arthritis: 24-Week Efficacy & Safety from BE OPTIMAL, a Phase 3, Multicentre, Randomised, Placebo-Controlled, Active Reference Study (ADALIMUMAB)

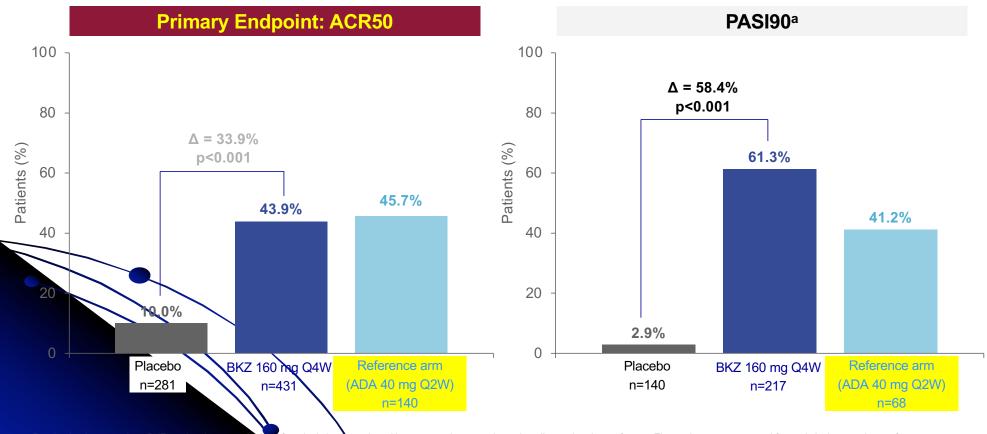

Iain B. McInnes,¹ Laura C. Coates,² Robert Landewé,³ Philip J. Mease,⁴ Christopher T. Ritchlin,⁵ Yoshiya Tanaka,⁶ Akihiko Asahina,⁷ Laure Gossec,⁸ Alice B. Gottlieb,⁹ Richard B. Warren,¹⁰ Barbara Ink,¹¹ Deepak Assudani,¹¹ Jason Coarse,¹² Rajan Bajracharya,¹¹ Joseph F. Merola¹³

¹Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; ²Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Diseases, University of Oxford and Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, UK; ³Amsterdam Rheumatology & Clinical Immunology Center, Amsterdam, and Zuyderland MC, Heerlen, The Netherlands; ⁴Swedish Medical Center and Providence St. Joseph Health and University of Washington, Seattle, Washington, USA; ⁵Department of Medicine, University of Rochester, Rochester, New York, USA; ⁶The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka; ⁷Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan; ⁸Sorbonne Université, Pitié Salpêtrière Hospital, Paris, France; ⁹Department of Dermatology; The Icahn School of Medicine at Mt Sinai, New York, New York, USA; ¹⁰Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, The University of Manchester, UK; ¹¹UCB Pharma, Slough, UK; ¹²UCB Pharma, Raleigh, North Carolina, USA; ¹³Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA.


EULAR 2022 | Congress | 1–4 June 2022

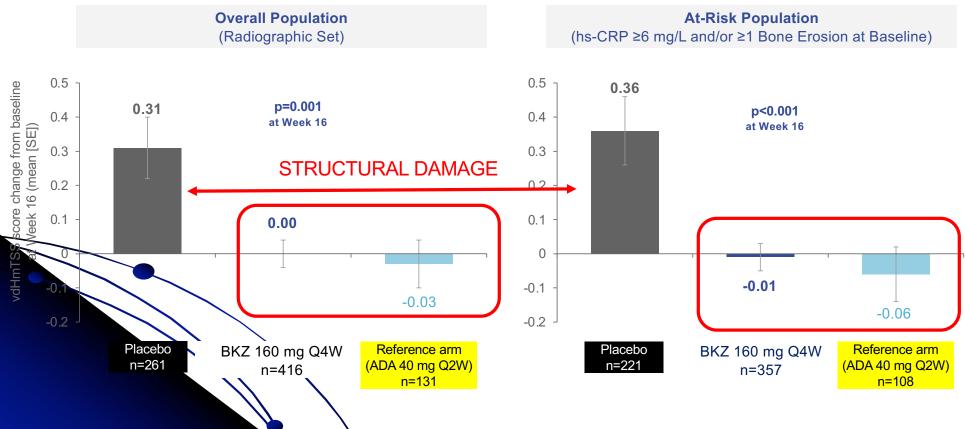
Presentation number: LB0001

Study Design: BE OPTIMAL



Key exclusion X Current or prior exposure to any biologics for treatment of PsA or PSO
 criteria X Active, symptomatic IBD at baseline or screening (prior history was not an exclusion criterion)

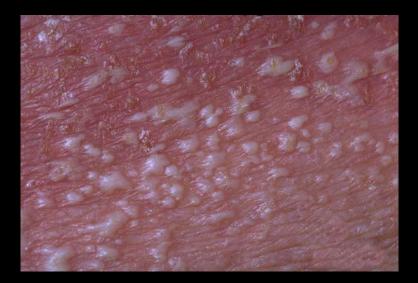
Efficacy: ACR50 and PASI-90 Responses at Week 16 (NRI)


BKZ demonstrated superiority vs placebo in improvements in joint and skin outcomes at Week 16

Randomised set. p values BKZ vs placebo were obtained from logistic regression with treatment, bone erosion at baseline and region as factors. The study was not powered for statistical comparisons of adalimumab to bimekizumab or adalimumab to placebo. A Patients with PSO involving ≥3% of BSA at baseline. ACR50: American College of Rheumatology criteria ≥50% response; ADA: adalimumab; BKZ: bimekizumab; BSA: body surface area; NRI: non-responder imputation PASI: Psoriasis Area and Severity Index; PASI90: ≥90% improvement in PASI; PSO: psoriasis; Q2W: every 2 weeks; Q4W: every 4 weeks.

Efficacy: Radiographic Outcomes at Week 16 (MI)

BKZ demonstrated superiority vs placebo in inhibition of structural progression at Week 16



Radiographic set. p values BKZ vs placebo were obtained from ANCOVA with treatment, bone erosion at baseline and region as fixed effects and the baseline value as covariate. The study was not powered for statistical comparisons of adalimumab to bimekizumab or idalimumab to placebo. ADA: adalimumab; BKZ: bimekizumab; CfB: change from baseline; hs-CRP: high-sensitivity C-reactive protein; MI: multiple imputation; Q2W: every 2 weeks; Q4W: every 4 weeks; SE: standard error; vdHmTSS: van der Heijde-modified Total Sharp Score.

SPESOLIMAB (SPEVIGO[™]):

IL-36Receptor Monoclonal Antibody for the Treatment of Generalized Pustular Psoriasis (GPP) FDA Approved Sept 2, 2022

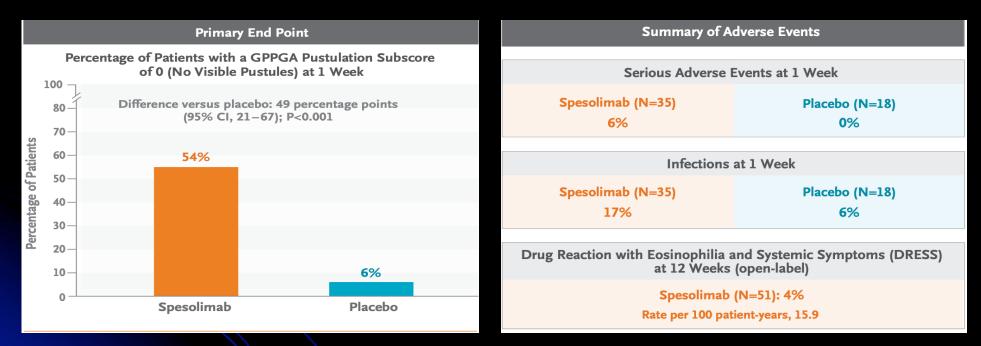
H. Bachelez, et al Trial of Spesolimab for GeneralizedPustular PsoriasisN Engl J Med 2021; 385:2431-2440DOI: 10.1056/NEJMoa2111563

SPESOLIMAB for GPP

BACKGROUND: The IL-36 pathway in GPP is supported by:

- Finding of loss-of-function mutations in the interleukin-36 receptor antagonist gene (IL36RN) and associated genes (CARD14, AP1S3, SERPINA3, and MPO)
- Over-expression of interleukin-36 cytokines in GPP skin lesions.

Spesolimab, a humanized anti-interleukin-36 receptor monoclonal antibody


Phase 2 Trial:,multicenter, randomized, double-blind, placebo-controlled trial: examined the efficacy and safety of spesolimab in adults presenting with a moderate-to-severe GPP flare.

- Intervention: 53 patients were randomly assigned in a 2:1 ratio to receive either a single 900-mg intravenous dose of spesolimab or placebo.
- most patients in the placebo group, were given open-label spesolimab and were followed for 12 weeks

1⁰ end point: was a Generalized Pustular Psoriasis Physician Global Assessment (GPPGA) pustulation sub-score of 0 (range, 0 [no visible pustules] to 4 [severe pustulation]) at the end of week 1.

H. Bachelez, et al Trial of Spesolimab for GeneralizedPustular PsoriasisN Engl J Med 2021; 385:2431-2440DOI: 10.1056/NEJMoa2111563

1^o Endpoint and SAEs

GPPGA 0-1: Speso: 15 of 35 patients (43%); Placebo: 2 of 18 patients (11%)

Infections at week 12: Speso: 24 of 51 (47%)

H. Bachelez, et al Trial of Spesolimab for GeneralizedPustular PsoriasisN Engl J Med 2021; 385:2431-2440DOI: 10.1056/NEJMoa2111563

SKIN – GUT (SINTAX*) Therapeutic Approach

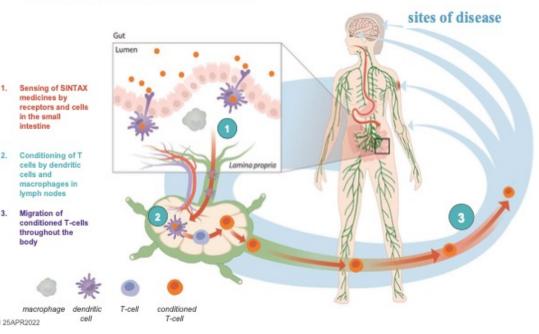
*SINTAX: Small Intestinal Axis.....via Mesenteric Lymph Nodes)

EDP1815: Phase 2 Mild-Moderate PsO

Single strain Prevotella Histicola a small intestine commensal bacteria, non living and harvested from a duodenal biopsy and put into a capsule

No gut colonization or impact on microbiome

3-Step MOA:


1. Impacts gut TLR-2

2. Conditioning of T-cells by dendritic cells and macrophages in the mesenteric lymph nodes

3. Migration of effector CD4+ T-cells throughout the body to sites of inflammation

Being studied in PsO and Atopic Dermatitis

Mechanism of Action

J Exp Med (2006) 203 (3): 497-500. https://doi.org/10.1084/jem.20060227

EDP1815: Phase 2 Mild-Moderate PsO

16-week study; 3 doses of QD EDP1815 in localize PsO (BSA 3-10%) -25-32% of EDP 1815 pts achieve PASI-50 (12% placebo) -20% of EDP 1815 pts achieve PGA-0/1 (9% placebo)

TREATMENT PERIOD			FOLLOW UP
Baseline	Week 4	Week 16 PASI-90	Week 20

EDP: 1815 Phase 2 Durability of Response

Durability and Deepening of Clinical Responses Observed in 24-Week Post-Treatment Period

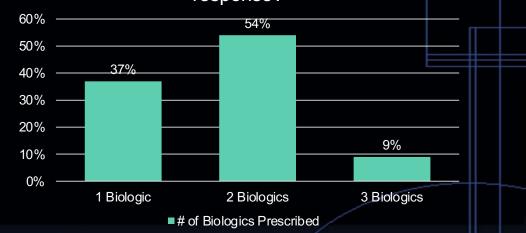
Personalized/Precision Medicine in Psoriasis Management

Personalized/Precision Medicine in Psoriasis Management

000000

NRS

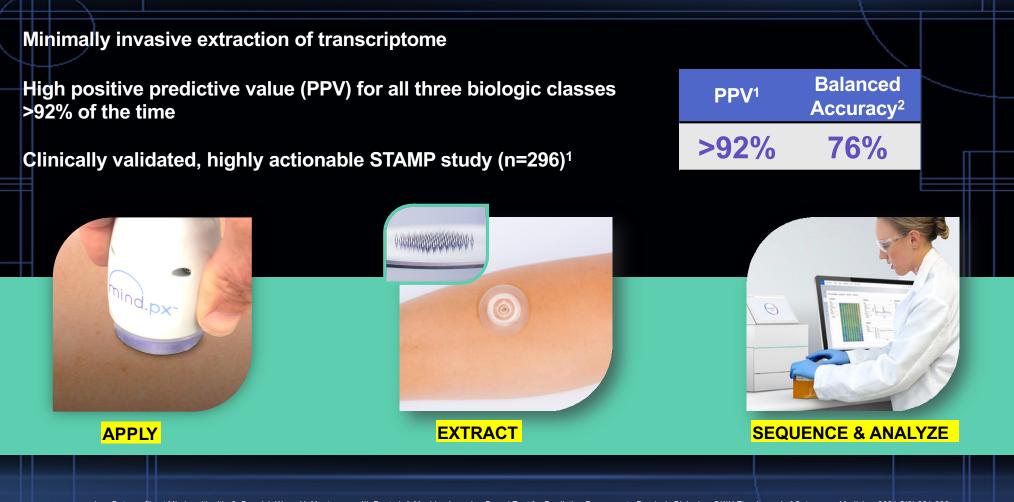
Correlating RNA to Drug Response is the missing predictive link between a patient's genetic markers and response to different drug classes.

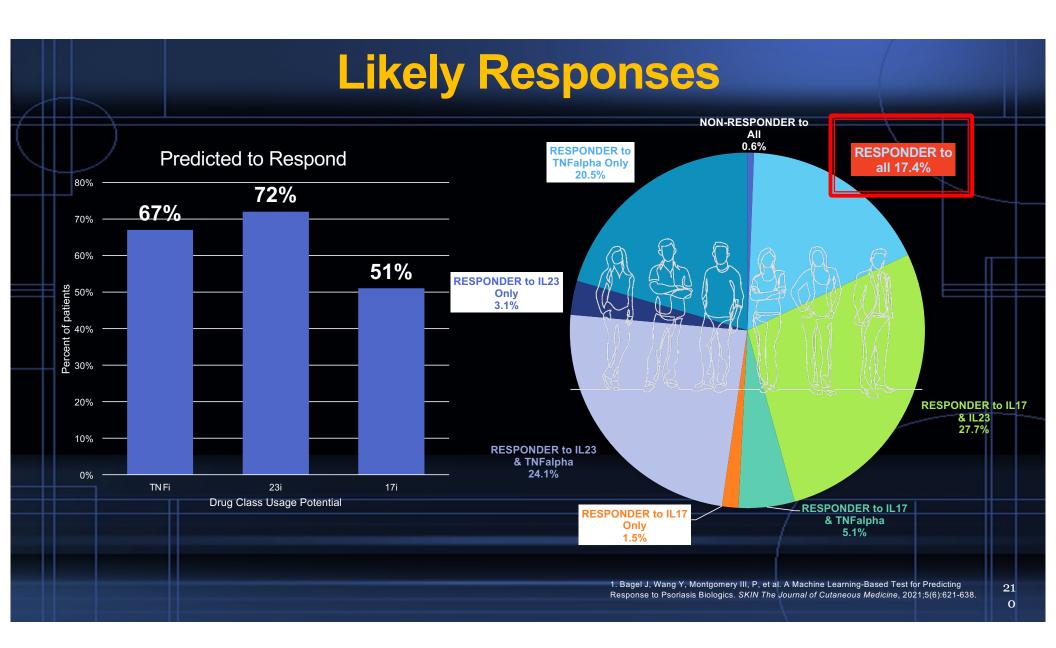

- New patients/switching patients
- Painless, minimally invasive test
- Patch placed on skin for 5 minutes
- RNA is used to evaluate over 7,000 biomarkers per test sample ... comparable to a biopsy
- Predicts biologic drug response to better select the best therapy
- Turnaround time for result = 14 days
- Commercially available now!

Why Do We Need This Test?

CorEvitas Response Rates¹

Biologic Class	CorEvitas Response Rates
TNF αi	46.0%
IL-17i	55.9%
IL-23i	50.7%


How many different biologics are typically needed to find the right biologic for the patient to achieve an adequate response?²


Prescribing the right biologic the first time = no need to switch.

Enos C, O'Connell K, Harrison R, McLean R, Dube B, Van Voorhees A. Psoriasis Severity, Comorbidities, and Treatment Response Differ among Geographic Regions in the United States. *JID Innovations*. 2021;1(2):100025. doi:10.1016/j.xjidi.2021.100025
 Strober B, Pariser D, Deren-Lewis A, et al. A Survey of Community Dermatologists Reveals the Unnecessary Impact of Trial-and-Error Behavior on the Psoriasis Biologic Treatment Paradigm. *Dermatol Ther (Heidelb)* (2021).

Obtaining The Transcriptome

1. Data on file at Mindera Health. 2. Bagel J, Wang Y, Montgomery III, P, et al. A Machine Learning-Based Test for Predicting Response to Psoriasis Biologics. SKIN The Journal of Cutaneous Medicine, 2021;5(6):621-638.


Wounds

What If I Told You It Was Traumatic and On The Leg Of A 93 yo Female

The Acute Wound Healing Process Consists of Four (4) Overlapping Phases^{1,2}

Normal wound healing is an orderly, sequential process^{1,2}

3 Products To Assist In Wound Healing In The Dermatology Clinic

PuraPly[®] AM: An Advanced Antimicrobial Barrier

PHMB (PolyHexaMethylene Biguanide)

PHMB is a positively-charged polymer that kills bacteria by binding and disrupting negatively-charged cell membranes.

It does not rely on cellular activity, it is effective against quiescent cells within biofilm.

Will not damage key cells (eg, fibroblasts) involved in wound healing⁶

BROAD-SPECTRUM PHMB

High tissue compatibility and low cytotoxicity^{5,7,8}

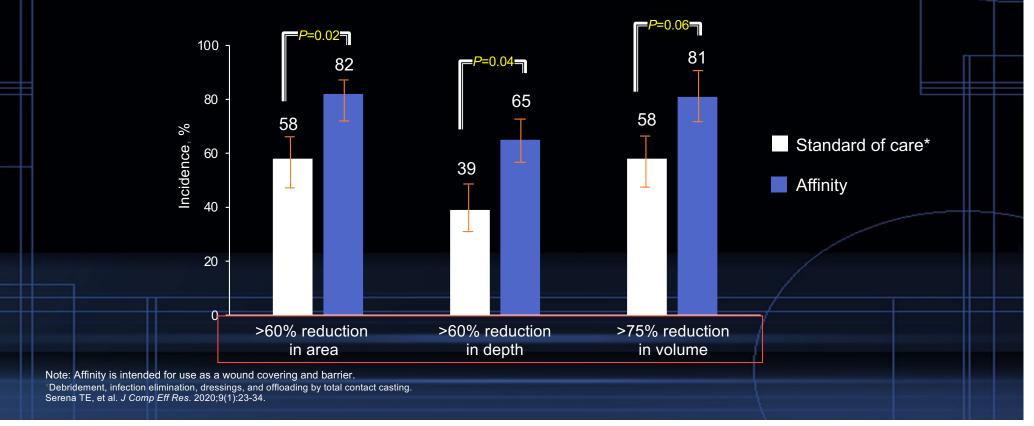
No known instances of bacteria acquiring resistance^{4,5,7,9}

1. Data on file, PDR-0001. Organogenesis Inc. 2. Data on file. PDR-0002. Organogenesis Inc. 3. PuraPly Antimicrobial [package insert]. Canton, MA: Organogenesis Inc; 2020. 4. Brantley J, et al. Wounds Int. 2016;7(3):1-5. 5. Gilbert P, Moore LE. J Appl Microbiol. 2005;99(4):703-715. 6. Zou SB, et al. Int Wound J. 2013;10(3):306-312. 7. Hubner NO, et al. Skin Pharmacol Physiol. 2010;23(suppl):17-27. 8. Sood A, et al. Adv Wound Care. 2014;3(8):511-529. 9. Sim W, et al. Antibiotics. 2018;7(4):e93.

Provides a sustained antimicrobial barrier effect^{1,2} Controls bioburden and biofilm regrowth¹⁻³

Properties of Human Amnion and Chorion¹

Property	Amnion	Chorion		
Extracellular matrix (ECM): structural matrix	Collagens I, III, IV, V, VI, elastin	Collagens I, III, IV, V, VI, tropoelastin		
ECM: glycoproteins	Fibronectin, laminins, nidogen	Fibronectin, laminins, nidogen		
ECM: proteoglycans	Chondroitin, dermatan sulfate, hyaluronan, decorin, biglycan	Chondroitin, dermatan sulfate, hyaluronan, decorin, biglycan, versican, perlican		
Selected growth factors [*]	EGF, HGF, TGF-β1, TGF-β3, bFGF, KGF, NGF, VEGF, PDGF, PIGF, TGF-α	HGF, TGF-β1, TGF-α, bFGF, VEGF, PDGF, PIGF		
	Mucin	Interferon a		
	Defensins	Defensins		
	TIMPS, CTGF, IL-1RA	TIMP-1		
	Groα, sICAM, IL-6, IL-8, MCP-1, MIF, serpin E1, SDF-1a, IL-10, IL-4, G-CSF	IL-6, IL-8, IL-4, SDF-1a, IL-10, GCSF		
Most amniotic growth factors are also present in chorion. 1. Table reproduced from Brantley, et al. Adv Wound Care. 2015;4(9):545-559.				


Fresh Amniotic Membrane Wound Covering: Affinity®

Cytokines	TGF-α	TIMP-1	TIMP-2	IL-1ra	IL-10
Growth factors	aFGF bFGF	VEGF EG-VEGF	VEGF-D PDGF-BB	ANG TSP-1	ANG-2 APL4
	EGF HGF	GAL IGF-I	IGF-II TGF-β1	TGF-β3 IGFBP-1	PIGF IGFBP-5

More wounds in the Affinity group achieved >60% reduction in area and depth and >75% reduction in volume

Incidence of reduction from baseline in ulcer area, depth, and volume

Dehydrated Placental Allograft Covering: NuShield®

- Complete dehydrated placental allograft wound ¹⁻³
- Convenient "in-office" shelf life
- Retains growth factor/cytokine content
- Analytical testing demonstrated: 640 components (growth factors, cytokines, and chemokines)^{1,5}

....unknown how many are bioactive

 McQuilling JP, et al. Int Wound J. 2019;16(3):827-840.
 Niknejad H, et al. Eur Cells Mater. 2008;15:88-99.
 Caporusso J, et al. Wounds. 2019;31(4 Suppl):S19-S27.
 Data on file. Description of BioLoc Process. Organogenesis Inc. 5. McQuilling JP, et al. Wound Repair Regen. 2019;27(6):609-621.

NuShield: Case Study Traumatic Wound 93 yo F

Progeria

- Limited growth
- Full-body alopecia
- Wrinkled skin
- Kidney failure
- Loss of eyesight
- Atherosclerosis
- Arthritis, osteoporosis Fx
- Scleroderma prevalent
- Distinctive appearance: large head, narrow, wrinkled face, beak nose
- Death in teenage years

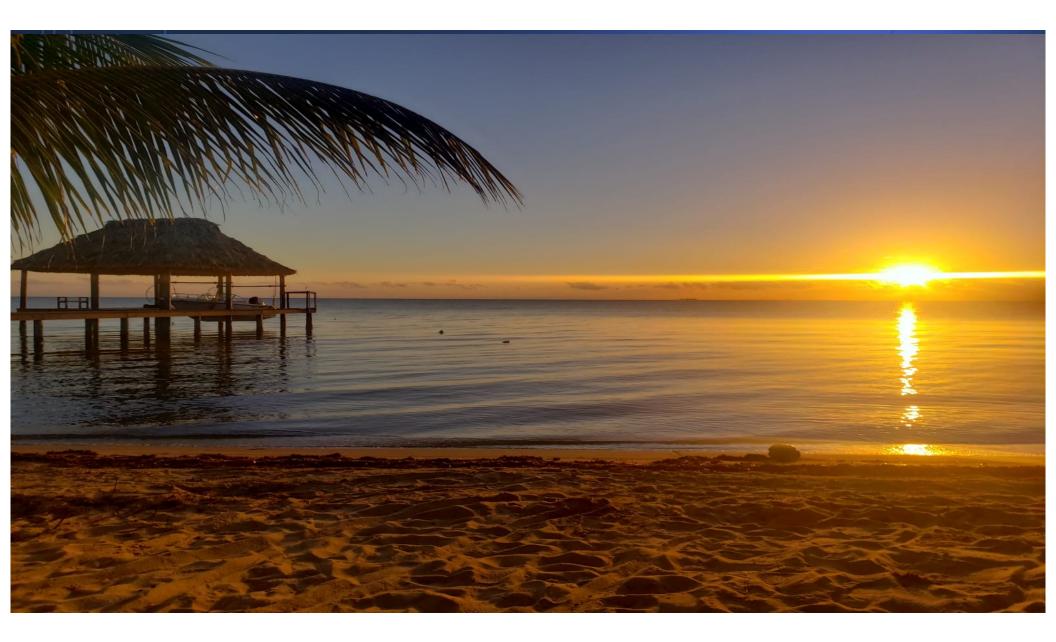
- LMNA gene codes for a structural protein called prelamin A
- Prelamin A processed to final form, called lamin A
- Lamin A, Lamin B1, Lamin B2, Lamin C, make up the nuclear lamina: provides shape and stability to the inner nuclear envelope
- Point mutation in LMNA gene leads to abn Lamin A called Progerin

Progeria

- Lonafarnib approved to treat Progeria 11-2020
- Interferes with Progerin synthesis
 - Inhibits farnesyltransferase
- Improves nuclear lamina: Better cellular replication, improved fibroblast function
- Studies demonstrated longer life, lower mortality
- 150mg/m² BID (comes as 50mg capsule/\$750 per)
- Nausea, vomiting, diarrhea, anorexia, fatigue
- COST: \$86,000/month (Most expensive US drug)

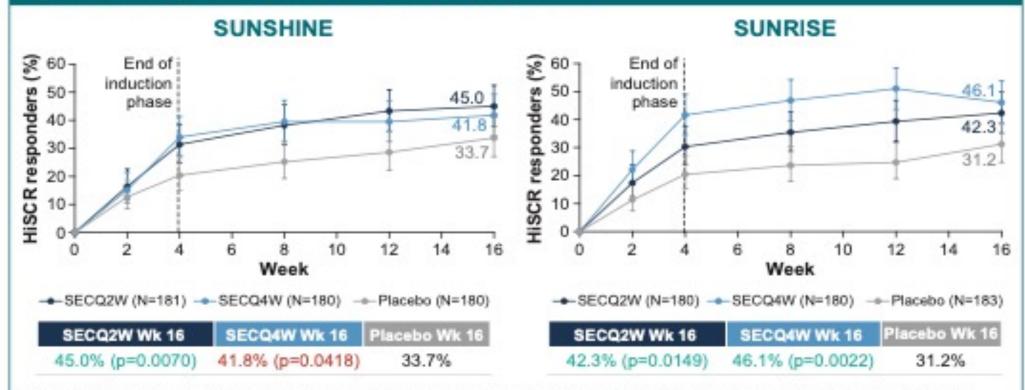
NCT00425607 & NCT00916747 JAMA. 2018 Apr 24;319(16):1687-1695 Drugs. 2021;81(2):283-289

Anifrolumab: FDA Approved 8-2-2021


- Human monoclonal antibody, binds to IFN-1 receptor, blocking Type-1 IFN action
- That includes: IFN-alfa, IFN-beta and IFN-kappa
- Most SLE have increased Type-1 IFN signaling
- Approval based primarily on TULIP-2, Phase 3
- 362 uncontrolled SLE; randomized 1:1; received fixed dose 300mg IV Q4w versus placebo Q4w
- Objective improvement by BICLA scale (48%)
- Improvements sustained 3 year; only 7% discontinued
- SQ delivery and Discoid LE trials underway

Arthritis Rheumatol. 2021;73:816-825 N Engl J Med 2020;382:211-221

Fespixon (ON 101) cream


- Diabetic Foot Ulcers; Ph 3 trials¹ FastTrack, out 2023?
- Extracts from plant extracts *Plectranthus amboinicus* and *Centella asiatica* act as Macrophage regulators:
 - M1 proinflammatory and M2 proregenerative
 - Plant extracts balance the ratio to accelerate wound healing
- Small trials, n=54, mean age 57, mean wound 4.8 cm²
- Apply to wounds b.i.d. with sterile gauze dressing
- Significant wound healing seen in patients
- Approved in Taiwan based on Phase 3 Internatl study²
- 1. https://clinicaltrials.gov/ct2/show/NCT01898923
- 2. JAMA Netw Open. 2021 Sep 1;4(9):e2122607. doi: 10.1001/jamanetworkopen.2021.22607.

OPTIMISM

Secukinumab in Hidradenitis

Figure 2. Primary Efficacy Endpoint: HiSCR up to Week 16

One-sided nominal p-values are based on a logistic regression model, the primary estimand, and multiple imputation. Error bars represent 95% CI. Green represents statistical significance and red represents non-significance compared with placebo. CI, confidence intervals; HISCR, hidradenitis suppurativa clinical response; N, number of patients in group; Q2W, every two weeks; Q4W, every four weeks; SEC, secukinumab 300 mg; Wk, week.

Arbovirus Vaccines

- Entering Phase III: Zika
- Two DNA
- Two mRNA
- Whole inactivated virus

Entering Phase III: Chikungunya

- VLP subunit
- Live attenuated virus

Hum Vaccin Immunother. 2020 Aug 11;1-5. doi: 10.1080/21645515.2020.1796428 JAMA. 2020;323(14):1369-1377

No Really Great Options

Scleroderma (Systemic and Localized)

Drug	Mechanism of Action	Given	Phase	
Vasculan (Ifetroban)	Thromboxan A2 Receptor Antagonist	PO	2a (SSc)	
HZN-825 (SAR100842)	Lysophosphtidic Acid Receptor 1 Antagonist	PO	2a (done); 2b (SSc)	
CM-101	Chemokine CCL24 Inhibitor	IV	Preclinical (SSc)	
Cannabidiol EHP-101	Cannabinoid Type 2 receptor agonist Hypoxia-inducible factor pathway	PO	2a (SSc)	
FCX-013 + Veledimex	Genetically modified fibroblasts + stimulator of MMP-1	Intradermal	1/2a (Morphea)	
TLY012	TNF-related apoptosis-inducing ligand Binds to fibroblast death receptor DR5	IV	1/2a later in 2021 (SSc)	

Dermatology Drugs

- Recent meaningful additions...NOT just "me too"
- Rich and varied pipeline...topical and systemic
- The future is bright: New drug classes in many categories, some of which we didn't even talk about

New Antifungals: Read This Paper!

J Drugs Dermatol 2022;21:496-501