Special Site Dermoscopy: Volar surface

Ashfaq A. Marghoob, MD

Attending Physician

Wallace line

The Wallace line is a faunal boundary line drawn in 1859 by the British naturalist Alfred Russel Wallace and named by the English biologist T.H. Huxley that separates the biogeographical realms of Asia and 'Wallacea', a transitional zone between Asia and Australia. To the west of the line are found organisms related to Asiatic species; to the east, a mixture of species of Asian and Australian.

Reticular pattern (2-step algorithm criteria)

Parallel pattern (Volar skin

 criteria)
Dermatoglyphics

Ridges \& Furrows

Anatomy

Ridges
Furrows

Why is it so important to locate ridges and furrows?

Anatomy of Volar skin

Characteristic Distribution of Melanin Columns in the Cornified Layer of Acquired Acral Nevus: An Important Clue for Histopathologic Differentiation From Early Acral Melanoma

Toshiaki Saida, MD, PhD,*\% Hiroshi Koga, MD,*娄 Yasufumi Goto, MD, PhD,* and Hisashi Uhara, MD, PhD*

FIGURE 1. Histopathologic features of acral nevus of the junctional type (case 16). The cornified layer slants slightly. A, Nevus cells arranged in nests are predominantly located in the crista profunda limitans (arrows), and only a few melanocytes are detected in the crista profunda intermedia (asterisks) (hematoxylin-eosin stain). B, Melanin granules in the cornified layer are detected as parallel columns regularly situated under the surface furrows (arrows), whereas they are mostly absent in the cornified layer under the surface ridges (asterisks) (Fontana-Masson stain).

Crista profunda limitans

Crista profunda intermedia (eccrine duct)

Parallel furrow pattern

Nests of nevus cells at the crista limitants

Benign pattern

- Secretory portion of eccrine sweat glands provide an anatomical niche for melanocyte-melanoma precursor cells
- This explains preferential distribution of early melanoma cells around sweat glands (crista profunda intermedia) in human volar skin = parallel ridge pattern

Okamoto et al. 2014

Parallel ridge pattern

Nests of melanoma cells
(invasion of the crista intermedia)

Malignant pattern

Management Algorithm for Acquired volar melanocytic lesions

Dermoscopy for Acral Melanocytic Lesions: Revision of the 3-step Algorithm and Refined Definition of the Regular and Irregular Fibrillar Pattern

Toshiaki Saida ${ }^{1}$, Hiroshi Koga ${ }^{1}$, Hisashi Uhara ${ }^{2}$

Commentary | Dermatol Pract Concept. 2022;12(03):e2022123

Acquired lesion on volar skin

Parallel ridge pattern (PRP)
Non-PRP
\oplus
${ }^{+}$

Significance of Dermoscopic Patterns in Detecting Malignant Melanoma on Acral Volar Skin

Results of a Multicenter Study in Japan

Toshiaki Saida, MD, PhD; Atsushi Miyazaki, MD; Shinji Oguchi, MD, PhD; Yasushi Ishihara, MD;
Yoriko Yamazaki, MD; Sumio Murase, MD, PhD; Shusuke Yoshikawa, MD; Tetsuya Tsuchida, MD, PhD; Yasuhiro Kawabata, MD, PhD; Kunihiko Tamaki, MD, PhD

Objective: To determine diagnostic variables such as sensitivity and specificity of the major dermoscopic patterns observed in melanocytic lesions on acral volar skin, with particular attention to the significance of the parallel ridge pattern and irregular diffuse pigmentation in detecting acral melanoma.

Design: Multicenter, retrospective study.
Setring: University hospitals in Japan.
Patients: Patients with melanocytic lesions on acral volar skin. A total of 712 melanocytic lesions (103 malignant melanomas, including 36 in situ lesions, and 609 melanocytic nevi) were consecutively collected from the files of 3 hospitals. Diagnoses of all the lesions had been determined histopathologically.

Interventions: Dermoscopic examination.
Main Orfcome Measures: The sensitivity, specificity, positive predictive value, negative predictive value,
and diagnostic accuracy of the major dermoscopic patterns seen in benign and malignant melanocytic lesions on acral volar skin.

Resolts: The parallel ridge pattern and irregular diffuse pigmentation showed extremely high specificity (99.0% and 96.6%, respectively) and very high negative predictive value (97.7% and 97.5%, respectively) in malignant melanoma. Formelanoma in situ, the positive predictive valueand agnostic accuracy oftre purulthinge pattern were significantly higher than those of irregular diffuse pigmentation ($P=.009$ and $P=.006$, respectively). In melanocytic nevi, the specificity and positive predictive value of the parallel furrow pattern and/or the latticelike pattern were found to be very high (93.2% and 98.3%, respectively).

Conclusions: Dermoscopy is immensely helpful in differentiating malignant melanomas from melanocytic nevi on acral volar skin. Moreover, the parallel ridge pattern aids in detecting acral melanomas in early, curable stages.

Arch Dermatol. 2004;140:1233-1238

Parallel ridge pattern 98% of melanomas
 $<1 \%$ acral nevi

Amelanotic MM: Vascular ridge pattern (VPRP)

VPRP

Acral lentiginous melanoma in the Turkish population and a new dermoscopic clue for the diagnosis

Association between Breslow thickness and dermoscopic findings in acral melanoma

Je-Ho Mun, MD, PhD, ${ }^{a, b}$ Gwanghyun Jo, MD, Claudia C. Darmavan, MBBS, ${ }^{\text {ab }}$
 Hyun-Chang Ko, MD, PhD, ${ }^{\text {e }}$, Myung-Soo Kim, MD, PhD, and Moon-Bum Kim, MD, PhDe,

Seoul, Jeonju, and Busan, South Korea
Table I. Frequencies of colors and dermoscopic patterns of AMs according to depth of invasion

Characteristic	AM in situ, $\mathrm{N}=25, \mathrm{n}(\%)$	Invasive $\mathbf{A M} \leq 2 \mathrm{~mm}$, $\mathrm{N}=17, \mathrm{n}(\%)$	Invasive $\mathbf{A M}>2 \mathrm{~mm}$, $\mathrm{N}=33, \mathrm{n}(\%)$	$\begin{gathered} \boldsymbol{P} \\ \text { value } \end{gathered}$
Color				
Black	17 (68.0)	17 (100)	27 (75.8)	. 033
Brown	19 (76.0)	14 (82.4)	24 (72.7)	. 752
Grey	16 (64.0)	9 (52.9)	25 (75.8)	. 153
White	4 (16.0)	3 (17.6)	26 (78.8)	<. 001
Blue	1 (4.0)	8 (47.1)	22 (66.7)	<. 001
Red	1 (4.0)	3 (17.6)	25 (75.8)	<. 001
Pattern				
Asymmetry	22 (88.0)	14 (82.4)	30 (90.9)	. 602
Parallel ridge pattern	21 (84.0)	16 (94.1)	27 (81.8)	. 494
Irregular blotches	6 (24.0)	15 (88.2)	21 (63.6)	<. 001
Irregular dots and globules	10 (40.0)	8 (47.1)	16 (48.5)	. 803
Ulcers	1 (4.0)	5 (29.4)	25 (75.8)	<. 001
Blue-white veils	1 (4.0)	8 (47.1)	21 (63.6)	<. 001
Polychromia	0 (0)	5 (29.4)	25 (75.8)	<. 001
Atypical vascular pattem	1 (4.0)	2 (11.8)	24 (72.7)	<. 001
Regression	2 (8.0)	2 (11.8)	3 (9.1)	1
Irregular fibrillar pattern	2 (8.0)	0 (0)	0 (0)	. 157

restuns: muluvarladie analysis revealeu nat me coiors rea (ouas ratio ivij $16.482,95 \%$ confidence inte

Association between Breslow thickness

and dermoscopic findings in

 acral melanomaJe-Ho Mun, MD, PhD, Gwanghyun Jo, MD, Claudia C. Darmawan, MBBS, ${ }^{a, b}$
Jin Park, MD, PhD, ${ }^{\text {c }}$ Jung Min Bae, MD, PhD, ${ }^{d}$ HyunJu Jin, MD, ${ }^{\text {e }}$ Woo-Il Kim, MD, Hoon-Soo Kim, MD, ${ }^{\text {e }}$ Hyun-Chang KO, MD, PhD, ${ }^{e}$ Byung-Soo Kim, MD, PhD, ${ }^{\text {e }}$, and Moon-Bum Kim, MD, PhD C ,

Seoul, Jeonju, and Busan, South Korea
> MM in situ

- PRP
- w/o red, white, blue colors
> Invasive MM
- Vessels (red)
- BWV
- Irregular blotches
- Ulcer

Exceptions to the PRP rule for MM

1. Peutz-Jeghers syndrome macules
2. Laugier-Hunziker syndrome
3. Ethnic pigmented macules
4. Dye (exogenous)
5. Chemotherapy induced pigmentation
6. CMN ($<1 \%$ of other nevi)
7. Subcorneal hemorrhage

Dermoscopic findings and histological correlation of the acral volar pigmented maculae in Laugier-Hunziker syndrome

> Elena SENDAGORTA, ${ }^{1}$ Mar Mari GONZALEZZBEATO
> 2. LaugierHunziker syndrome

- Increased melanin in basal keratinocytes:
- lips
- oral mucosa
- perineum
- nails
- volar skin

Figure 2. (a) Dermoscopic examination of the nail plates revealing homogeneous, band-like pigmentations. (b) A parallel-ridge pattem was found on the volar maculae of the fingertips. (c) Another volar maculae of the fingertips showing parallel-ridge pattem on the fingertips.

Benign Dermoscopic Parallel Ridge Pattern Variants

Alice Phan, MD; Stéphane Dalle, MD; Marie-Cécile Marcilly, MD; Jean-Pierre Bergues, MD; Luc Thomas, MD, PhD; Centre Hospitalier Lyon-Sud, Claude Bernard University, Pierre Benite, France

3. Ethnic pigmented macules

My experience: Context is key. These darker macules occur in a background of normal skin that also has a PRP!

7. Subcorneal hemorrhage ("pebbles on the ridges")

Scrape off stratum corneum

Acquired lesion on volar skin

Parallel-furrow pattern

- linear pigmentation in the furrows

Ridge

Dermoscopy patterns	Definition	Schema
Benign patterns	Pigmentation following the furrows	
Parrallel furrow pattern		

9\% of melanomas

(focally located \& not predominant pattern)
42% of nevi
(throughout \& predominant pattern)

Single line pigmentation of the furrows

- Parallel furrow pattern

b) single dotted line variant

c) double line variant

b) double dotted line variant

Minor Dermoscopic Patterns of Melanocytic Lesions of Volar Skin

Parallel pigmented lines in the furrows

Dots/globules on the ridge or adjacent to the ridges

Anatomy

Nevomelanocytic nests in the papillary dermis

Anatomy

Nevomelanocytic nests in the papillary dermis

Anatomy

Nevomelanocytic nests surrounding adnexal structures

What kind of melanocytic neoplasm has nests in dermis and nests surrouñing adnexal structures?

Dermoscopic Characteristics of Congenital Melanocytic Nevi Affecting Acral Volar Skin

Akane Minagawa, MD; Hiroshi Koga, MD; Toshiaki Saida, MD, PhD

Tardive CMN

pic features of
uation of der-
rsity hospital.
om January 1,

component patterns: the parallel furrow pattern in 6 (25\%), the crista dotted pattern in 3 (12\%), the fibrillar pattern in $2(8 \%)$, and the globular, globulostreaklike, nontypical, and parallel ridge patterns in 1 each (4\%). We also followed up 6 lesions for several years. Changes in the dermoscopic features were observed in 4 CMN lesions from patients younger than 14 years. Three lesions had a combination of the crista dotted and parallel furrow patterns on the first visit that changed to the nontypical pattern; in addition, the degrees of pigmentation decreased during follow-up. In the remaining lesion, the globulostreaklike pattern changed to the parallel furrow pattern.

Conclusions: Most CMN lesions affecting acral volar skin show characteristic dermoscopic features distinguishable from acral melanoma. The combination of the crista dotted and parallel furrow patterns (ie, peas-in-a-pod pattern) is the most common feature in acral CMN. Some lesions of acral CMN fade during childhood.

Arch Dermatol. 2011;147(7):809-813

Lattice-like pattern

- linear pigmentation in the furrows
- with cross striations across the ridges

Ridges

Lattice-like pattern

7\% melanomas (focally located and not predominant pattern)

19\% of nevi (throughout and predominant
pattern)

Significance of Dermoscopic Patterns in Detecting Malignant Melanoma on Acral Volar Skin

Results of a Multicenter Study in Japan

Toshiaki Saida, MD, PhD; Atsushi Miyazaki, MD; Shinji Oguchi, MD, PhD; Yasushi Ishihara, MD;
Yoriko Yamazaki, MD; Sumio Murase, MD, PhD; Shusuke Yoshikawa, MD; Tetsuya Tsuchida, MD, PhD; Yasuhiro Kawabata, MD, PhD; Kunihiko Tamaki, MD, PhD

Obiective: To determine diagnostic variables such as sensitivity and specificity of the major dermoscopic patterns observed in melanocytic lesions on acral volar skin, with particular attention to the significance of the parallel ridge pattern and irregular diffuse pigmentation in detecting acral melanoma.

Design: Multicenter, retrospective study.
Setring: University hospitals in Japan.
Pafients: Patients with melanocytic lesions on acral vo lar skin. A total of 712 melanocytic lesions (103 mal nant melanomas, including 36 in situ lesions, and 60 melanocytic nevi) were consecutively collected from the files of 3 hospitals. Diagnoses of all the lesions had been determined histopathologically.

Interventions: Dermoscopic examination.
Main Orfcome Measures: The sensitivity, specificity, positive predictive value, negative predictive value,
and diagnostic accuracy of the major dermoscopic patterns seen in benign and malignant melanocytic lesions on acral volar skin.

Resolts: The parallel ridge pattern and irregular diffuse pigmentation showed extremely high specificity (99.0% and 96.6%, respectively) and very high negative predictive value (97.7% and 97.5%, respectively) in malignant melanoma. For melanoma in situ, the positive predictive value and diagnostic accuracy
($P=000$ and $P=.006$, respectively). In melanocytic nevi, ($P=.009$ and $P=.006$, respectively). In melanocytic nevi, the specificity and positive predictive value of the parallel furrow pattern and/or the latticelike pattern were found to he very high (93.2% and 98.3%, respectively).

Conclusions: Dermoscopy is immensely helpful in differentiating malignant melanomas from melanocytic nevi on acral volar skin. Moreover, the parallel ridge pattern aids in detecting acral melanomas in early, curable stages.

Arch Dermatol. 2004;140:1233-1238

Fibrillar pattern

- Lines crossing at an angle across both the furrows and ridges

Fibrillar pattern

Furrow pattern

Lattice pattern

Ref: Myazaki A et al.: JAAD 53:230, 2005

Histology parallel furrow pattern:

 Edge of weight bearing sole

Ref: Myazaki A et al.: JAAD 53:230, 2005

Histology fibrillar pattern:

Weight bearing sole

column slants
Ref: Myazaki A et al.: JAAD 53:230, 2005

Fibrillar pattern: predominant pattern throughout

35% of melanomas

33% of nevi

Fibrillar pattern anchored in the furrows

Fibrillar pattern anchored on the ridges

Benign Dermoscopic volar patterns

Pattern	Soles $\mathrm{N}=165$	Palms $\mathrm{N}=45$	Total $\mathrm{N}=210$
"Parallel furrow" "	$81(49 \%)$	$29(64 \%)$	$110(52,4 \%)$
"Lattice-like"	$17(10 \%)$	$9(20 \%)$	$26(12 \%)$
"Fibrillar"	$13(7,9 \%)$	0	$13(6 \%)$

J. Malvehy, S. Puig. Dermoscopic patterns of benign volar melanocytic lesions in patients with atypical mole syndrome. Arch Dermatol, 2004

NB: All fibrillar lesions on the palm are considered suspect!

Dermoscopy for Acral Melanocytic Lesions: Revision of the 3-step Algorithm and Refined Definition of the Regular and Irregular Fibrillar Pattern

Toshiaki Saida ${ }^{1}$, Hiroshi Koga ${ }^{1}$, Hisashi Uhara ${ }^{2}$

Regular FP of acral nevus

The fibrils constituting the regular FP are evenly distributed throughout the lesion and mostly same in color and thickness (Figure 2A). The endpoints (deeper color ends) of the fibrils tend to line up on the sulci of the skin markings. In addition, not infrequently, the FP is combined with the PFP and/or changes to the PFP at the periphery. In most cases, the oblique dermoscopy demonstrates that the FP is originally the PFP (Figure 2B).

Figure 2. Regular fibrillar pattern of acral nevus (dermoscopy with the furrow ink test). (A) The fibrils constituting the pattern are regular in color, thickness and distribution. All the endpoints of the fibrils line up on the sulci of the skin markings. The pattern changes to the parallel furrow pattern in the lower portion. (B) The oblique dermoscopy reveals that this is originally the parallel furrow pattern.

Fibrillar pattern (soles only)

Type A

Junctional/compound nevus

Type B

Melanoma in situ

Type A = Melanocytic Nevus

Type A = Melanocytic Nevus

Type B = Melanoma

Type B = Melanoma

Significance of Dermoscopic Patterns in Detecting Malignant Melanoma on Acral Volar Skin

Results of a Multicenter Study in Japan

Toshiaki Saida, MD, PhD; Atsushi Miyazaki, MD; Shinji Oguchi, MD, PhD; Yasushi Ishihara, MD;
Yoriko Yamazaki, MD; Sumio Murase, MD, PhD; Shusuke Yoshikawa, MD; Tetsuya Tsuchida, MD, PhD; Yasuhiro Kawabata, MD, PhD; Kunihiko Tamaki, MD, PhD

Objective: To determine diagnostic variables such as sensitivity and specificity of the major dermoscopic patterns observed in melanocytic lesions on acral volar skin, with particular attention to the significance of the parallel ridge pattern and irregular diffuse pigmentation in detecting acral melanoma.

Design: Multicenter, retrospective study.
Setring: University hospitals in Japan.
Pafients: Patients with melanocytic lesions on acral volar skin. A total of 712 melanocytic lesions (103 malignant melanomas, including 36 in situ lesions, and 609 melanocytic nevi) were consecutively collected from the files of 3 hospitals. Diagnoses of all the lesions had been determined histopathologically.

Interventions: Dermoscopic examination.
Main Orfcome Measures: The sensitivity, specificity, positive predictive value, negative predictive value,
and diagnostic accuracy of the major dermoscopic patterns seen in benign and malignant melanocytic lesions on acral volar skin.

Resolts: The parallel ridge pattern and irregular diffuse pigmentation showed extremely high specificity $(99.0 \%$ and 96.6%, respectively) and very high negative predictive value (9..7\% and 97.5%, respectively) in malignant melanoma. Formelanoma in situ, the positive predictive value and agnostic accuracy of tire parthen rige pattern were significantly higher than those of irregular diffuse pigmentation ($P=.009$ and $P=.006$, respectively). In melanocytic nevi, the specificity and positive predictive value of the parallel furrow pattern and/or the latticelike pattern were found to be very high (93.2% and 98.3%, respectively).

Conclusions: Dermoscopy is immensely helpful in differentiating malignant melanomas from melanocytic nevi on acral volar skin. Moreover, the parallel ridge pattern aids in detecting acral melanomas in early, curable stages.

Arch Dermatol. 2004;140:1233-1238

JAMA Dermatology I Original Investigation

Clinical and Histopathologic Characteristics of Melanocytic Lesions on the Volar Skin Without Typical Dermoscopic Patterns

```
Yasutomo Mikoshiba, MD: Akane Minagawa, MD. PhD: Hiroshí Koga, MD. PhD: Yoshiharu Yokokawa, PhD: Hisashi Uhara, MD. PhD: Ryuhei Okuyama, MD. PhD
Figure 2. Dermoscopic Images of Representative Melanocytic Nevus Cases Not Showing Typical Benign Dermoscopic Patterns
```


VS.
Figure 3. Dermoscopic Images of Representative Melanoma Cases Not Showing Typical Parallel Ridge Pattern by Dermoscopy

- Asymmetry (disorganized distribution of colors \& structures)
- ≥ 3 colors
- Blue-white structures
- Vessels
- Dots
- Streaks
- Abrupt edges

The BRAAFF checklist: a new dermoscopic algorithm for diagnosing acral melanoma

A. Lallas, ${ }^{1}$ A. Kyrgidis, ${ }^{1}$ H. Koga, ${ }^{2}$ E. Moscarella, ${ }^{1}$ P. Tschandl, ${ }^{3}$ Z. Apalla, ${ }^{4}$ A. Di Stefani, ${ }^{5}$ D. Ioannides, ${ }^{2}$ H. Kittler, ${ }^{4}$ K. Kobayashi, ${ }^{6,7}$ E. Lazaridou, ${ }^{2}$ C. Longo, ${ }^{1}$ A. Phan, ${ }^{8}$ T. Saida, ${ }^{3}$ M. Tanaka, ${ }^{6}$ L. Thomas, ${ }^{8}$ I. Zalaudek ${ }^{9}$ and G. Argenziano ${ }^{10}$

Table 5 The BRAAFF checklist for the diagnosis of acral melanoma

Acronym	Criterion	Points
B	Irregular blotch	+1
R	Parallel ridge pattern	+3
A	Asymmetry of structures	+1
A	Asymmetry of colours	+1
F	Parallel furrow pattern	-1
F	Fibrillar pattern	-1

A total score of ≥ 1 is needed for a diagnosis of melanoma.

Table 6 Assessment of the accuracy of the BRAAFF checklist for the diagnosis of acral melanoma in different subgroups of lesions
rallel furrow pattern t) and asymmetry of

Subgroups	Sensitivity (\%)	Specificity (\%)
All melanomas vs. all naevi	$93 \cdot 1$	$86 \cdot 7$
Melanoma in situ vs. all naevi	$81 \cdot 0$	89.6
Invasive melanoma vs. all naevi	96.6	92.6
All melanomas vs. excised naevi	$89 \cdot 3$	86.9
All melanomas vs. nonexcised	91.6	94.5
naevi		

Diffuse variegate pigmentation	Pigmented blotches of various shades of brown observed in some portions of the lesion	

- Asymmetry (disorganized distribution of colors \& structures)
- ≥ 3 colors
- Blue-white structures

Table 5 The BRAAFF checklist for the diagnosis of acral melanoma

Acronym	Criterion	Points
B	Irregular blotch	+1
R	Parallel ridge pattern	+3
A	Asymmetry of structures	+1
A	Asymmetry of colours	+1
F	Parallel furrow pattern	-1
F	Fibrillar pattern	-1

A total score of ≥ 1 is needed for a diagnosis of melanoma.

Multi-comnponent pattern	Abrupt edge, diffuse pigmentation, peripheral irregular globules and dots, multiple colors, atypical streaks in combination with localized areas exhibiting benign patterns (fibrillar, parallel furrow or lattice-like)	IIII

- Asymmetry (disorganized distribution of colors \& structures)
- $\quad \geq 3$ colors
- Blue-white structures
- Dots

Table 5 The BRAAFF checklist for the diagnosis of acral melanoma

Acronym	Criterion	Points
B	Irregular blotch	+1
R	Parallel ridge pattern	+3
A	Asymmetry of structures	+1
A	Asymmetry of colours	+1
Parallel furrow pattern	-1	
F	Fibrillar pattern	-1

Benign patterns (non-classic)

Globular pattern	Globules not associated with a parallel pattern	Light brown homogeneous pigmentation with an amorphous appearance
Homogeneous pattern		
Acral reticular pattern	Well-defined pigment network not associated with the skin markings	

This lesion does not manfifest a benign nor a malignant acral pattern. It measures aver 1 cm in greatest diameter.

Other lesions on volar skin:

1. Tinea nigra
2. Scabies
3. Angioma
4. Poroma

ORIGINAL RESEARCH
Dermoscopy improves diagnosis of tinea nigra: A study of 50 cases

Peter Piliouras, ${ }^{1,2,4}$ Scott Allison, ${ }^{2}$ Cliff Rosendahl, ${ }^{2}$ Petra G Buettner ${ }^{5}$ and David Weedon ${ }^{3}$
${ }^{1}$ Department of Dermatology, Royal Brisbane and Women's Hospital, ${ }^{2}$ School of Medicine, University of Queensland, ${ }^{3}$ Sullivan and Nicolaides Pathology, Brisbane, ${ }^{4}$ School of Medicine, and ${ }^{5}$ Skin Cancer Research Group, School of Public Health, James Cook University, Townsville, QLD, Australia

- Clinical diagnosis of tinea nigra was made/suggested in $7 / 50$ cases (14%)
- When dermoscopy was used, Dx was suggested in 7/13 (53.8\%)
- When no dermoscopy was used ($n=37$) tinea nigra was not considered ($P<0.001$)
- CONCLUSION: Dx of tinea nigra is significantly improved by dermoscopy

Pigmented spicules / Wispy pigmentation that does not respect the ridges or furrows

Angioma serpiginosum: report of an unusual acral case and review of the literature*

Azael Freites-Martinez ${ }^{1}$
Amalia Moreno-Torres ${ }^{1}$
Almudena Hernández Núñez ${ }^{1}$

Diego Martinez-Sanchez ${ }^{1}$
Maria Huerta-Brogeras ${ }^{1}$
Jesus Borbujo ${ }^{1}$

Red dots along
each side of ridge
(double red dotted ridge pattern)

Eccrine openings on ridge

Anatomy

> Sweat glands

Ridges
Furrows

Anatomy

"The capillary vascular proliferations extend up into the dermal papillae sparing the adnexal structures..."

Anatomy

Anatomy of Volar skin

Dermoscopic Appearance of Amelanotic Volar Melanoma Compared With Volar Angioma

JAMA Dermatology | Original Investigation
Clinical and Histopathologic Characteristics
of Melanocytic Lesions on the Volar Skin
Without Typical Dermoscopic Patterns
Yasutomo Mikoshiba, MD; Akane Minagawa, MD, PhD; Hiroshi Koga, MD, PhD; Yoshiharu Yokokawa, PhD: Hisashi Uhara, MD, PhD; Ryuhei Okuyama, MD, PhD

Malignant melanoma
Equivocal lesion

Melanomas and Mechanical Stress Points on the Plantar Surface of the Foot

Akane Minagawa, M.D., Ph.D. Toshikazu Omodaka, M.D.
Ryuhei Okuyama, M.D., Ph.D. Shinshu University School of Medicine Matsumoto, Japan
rokuyama@shinshu-u.ac.jp

N ENGLJMED 374;24 NEJM.ORG JUNE 16, 2016

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.
~ Mark Twain

